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ABSTRACT 
This paper presents a new view of logical variables which helps solving efficiently the 
#P complete #2SAT problem. Variables are considered to be more than mere place 
holders of information, namely: Entities exhibiting repetitive patterns of logical truth 
values. Using this insight, a canonical order between literals and clauses of an arbitrary 
2CNF Clause Set S is shown to be always achievable. It is also shown that resolving 
clauses respecting this order enables the construction of small Free Binary Decision 
Diagrams (FBDDs) for S with unique node counts in O(M4) or O(M6) in case a particular 
shown Lemma is relaxed, where M is number of clauses. Efficiently counting solutions 
generated in such FBDDs is then proven to be O(M9) or O(M13) by first running the 
proposed practical Pattern-Algorithm 2SAT-FGPRA and then the counting Algorithm 
Count2SATSolutions, so that the overall complexity of counting 2SAT solutions is in P. 
Relaxing the specific Lemma enables a uniform description of kSAT-Pattern-Algorithms 
in terms of (k-1)SAT- ones opening up yet another way for showing the main result. This 
second way demonstrates that avoiding certain types of copies of sub-trees in FBDDs 
constructed for arbitrary 1CNF and 2CNF Clause Sets, while uniformly expressing kSAT 
Pattern-Algorithms for any k>0, is a sufficient condition for an efficient solution of kSAT 
as well. Exponential lower bounds known for the construction of deterministic and non-
deterministic FBDDs of some Boolean functions are seen to be inapplicable to the 
methods described here. 
 
Keywords: Logic, Duality, Variables, Patterns, Container, kSAT, #2SAT, FBDD, P=NP 
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1 There is no loss of generality in giving 
examples from the monotone 2CNF case, 
because properties of logical variables, relevant 
for this work, are already applicable in this 
simplest case.  
2 Formal definitions and illustrations of BDDs 
are seen below, but can also be found in, e.g., 
[Wegener 2000]. 

I INTRODUCTION 
The current work aims at applying a 
new view of logical variables to the 
solution of #2SAT. This view 
considers variables to be more than 
mere place holders of information, 
namely: Entities exhibiting 
repetitive patterns of logical truth 
values. The ideas are materialized in 
novel Algorithms imposing 
universally applicable structural 
criteria on 2CNF Clause Sets, 
according to which clauses are 
ordered by their pattern lengths and 
least literals are always chosen for 
instantiation without prior trials. 
This enables efficient construction 
of small FBDDs upon which simple 
and equally efficient counting 
Algorithms can then be applied. To 
informally illustrate the basic ideas 
we start first with a concrete 
example.  
Let be S={{x0,x4}{x1,x2}{x2,x3}}. 
w.l.o.g., a monotone 2CNF formula1 for 
which we would like to find a validating 
Truth Assignment by instantiating 
literals. Our instantiations result 
ultimately in a decision tree, which may 
be abstracted into a Binary Decision 
Diagram (BDD)2. Let PR, the used 
procedure, be described in pseudo-code3 
as follows. 
 

PR: 

Inputs: Arbitrary 2CNF Clause Set S 
Output: BDD 
Data Structure: Store of resolved Sets and their 
BDDs (ST)  
Steps:  

3 Functions used in all pseudo-codes given in this 
work, except those of the theory section, have 
commonly used meanings and don’t need any 
further specification as the procedures they are 
embedded in intend to give the reader only a 
sketch of the ideas under investigation, details 
and formalizations of which are found only in the 
Theory section. 
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1- Select any Literal x from a Clause CÎ S 
2- Put x=TRUE in S forming S’ 
3- If (S’ evaluates to TRUE)  

leftResult=TRUE-Node 
Else  
if (any C’Î S’ Evaluates to 
FALSE)  
leftResult=FALSE-Node 

4- Put x=FALSE in S forming S’’ 
5- If (S’’ evaluates to TRUE)  

rightResult=TRUE-Node 
Else  
if (any C’’Î S’’ Evaluates to 
FALSE)  
rightResult=FALSE-Node 

6- Search for S’ in ST if not 
TRUE/FALSE  

If found  
Put leftResult =BDD of S’ 
Else  
- Put leftResult=PR(S’) 
- Store S’ as well as leftResult 
in ST 

7- Search for S’’ in ST if not 
TRUE/FALSE 

If found  
Put rightResult =BDD of S’’ 
Else  
- rightResult=PR(S’’) 
- Store S’’ as well as 
rightResult in ST 

8- Create node Result such that: S is 
Clause Set of Result and: 
 a- leftNode(Result)=leftResult 
 b- rightNode(Result)=rightResult 
9- Store S as well as Result in ST 
10- Return Result 

 

This procedure does not instruct us how 
to choose literals for instantiation. Such 
a choice is crucial for the size of resulting 
BDDs as can be seen in Figures (1-a) and 
(1-b) in which non-terminal node counts 
are 5 and 10 respectively. 
 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

Let us call the content of a stack which 
registers the Literal choices made by PR 
in step 1 (while solving a problem p 
expressed in a 2CNF Clause Set): A 
Variable Ordering (to be précised in 
Section III, Notation: ∏p). (Figure 1-a) 
shows an ordering ∏p = 2<1<3<0<4 
which makes the number of nodes 
generated in the final BDD half the 
number needed if we chose ∏’p = 
0<1<2<3<4 of (Figure 1-b). We call ∏’p 
Canonical Ordering (Notation: ∏pc), 
because it represents the order in which 
variables are listed from left to right in 
the Truth Table: 
 

x0 x1 x2 x3 x4 
0 0 0 0 0 
0 0 0 0 1 
0 0 0 1 0 
0 0 0 1 1 
0 0 1 0 0 
0 0 1 0 1 
0 0 1 1 0 

…..     
 

Since the number of possible orderings 
may be very large even for a reasonable 
number of variables: Finding for a 
problem p an optimal ordering ∏p, i.e., 
one which enables the construction of 
minimal BDDs, is in general NP-
complete (c.f. [Bolling 1996]). The first 
trivial, but important observation we can 
make, however, is the following: 
 

Observation-1: It is possible to change 
any ordering ∏p to a canonical one ∏pc 

Algorithm – A1 

Figure 1-b 

Figure 1-a 

Truth Table – T1 
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by renaming variables in the Truth 
Table.  
In the above example: Renaming 
x2>x0,x3>x2,x0>x3 makes the smaller 
BDD achievable via a Canonical 
Ordering for S’={{x0,x1}{x0,x2}{x3,x4}} 
which is equivalent, via renaming, to S. 
An important consequence of 
Observation-1 is that we can focus our 
attention on the study of conditions 
under which a Canonical Ordering 
produces BDDs with small node counts, 
instead of searching in all Ordering 
possibilities for suitable choices. This 
idea leads to the following central 
Conjecture: 
 
Conjecture: If during the resolution 
process in which PR recursively 
processes any 2CNF Clause Set S: 
 

1- It always uses Canonical 
Orderings to instantiate literals in S 

2- It makes sure S that respects the 
conditions under which Canonical 
Orderings produce small BDDs, 
transforming S into an equivalent S’ if 
necessary, Then the BDD produced by 
PR is small. 
 

Therefore, this work has two main 
objectives: 
 

a- First understand and then formalize 
the conditions under which Canonical 
Orderings produce small BDDs 
b- Prove the Conjecture. 
 

To get an intuitive understanding of what 
those conditions may be, we focus our 
attention on constructing BDDs for S in 
the above example only using Canonical 
Orderings. More particularly: We would 
like to investigate node counts whenever 
one single clause is resolved against a 

 
4 To do so: PR has to be changed to allow 
sequential processing of clauses. To avoid 
unnecessary complication and length: This is 
only done in the formal part starting with Section 

BDD constructed for the beginning of a 
Clause Set4. (Figure 1-c) shows two 
starting alternatives for S: 
S’’={{x1,x2}{x2,x3}} and 
S”’={{x0,x4}{x1,x2}}. Node counts are 
clearly different. Remembering that 
(Figure 1-b) depicts the BDD for the 
whole S, we have therefore two 
possibilities of node-count-growth from 
M=2 to M=3, where M is the number of 
clauses in S: From 4 (S’’) to 10 or from 
6 (S’’’) to 10. In both cases we notice a 
blow-up of the number of nodes resulting 
from “copying” almost all of previously 
constructed nodes. 

 
 

What about S’ ? (Figure 1-d) shows a 
node-count-growth from 3 to only 5 in 
the BDDs constructed for 
Siv={{x0,x1}{x0,x2}} and S’, 
respectively.  

III (the 2SAT-GSPRA Procedure of Definition 
2). The reader may wish in this section to 
consider PR capable of sequential processing of 
clauses and continue reading under this 
assumption.  

Figure 1-c: Starting alternatives 
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Obviously, the nature of growth in the 
case of S’, the formula in which we 
renamed variables to obtain a Canonical 
Ordering, is different: The full BDD is 
constructed from the previous one by just 
adding two additional nodes to the 
lowest BDD-level.  
 
How can we explain this?  
 
A second intuitive observation helps in 
understanding this phenomenon:  
 
Observation-2: Any variable xi 
represents in the canonical Truth Table 
a repetitive pattern of 0s and 1s whose 
length is 2N-i and which is given by the 
formula:  

2N-i-1(0)2N-i-1(1) 
 

where N is the total number of variables. 
 
To fully appreciate this observation: A 
graph may be drawn in which the x-axis 
represents rows of a Truth Table and the 
y-axis Boolean values given for a 
particular 2CNF formula f. We call this 
graph: Pattern-Domain of f (PDf). 
(Figure 1-e) shows for Truth Table T1 
PD{x0,x4}, PD{x2,x3}, PD{x2}, respectively. 
A Pattern Length Repetition of a variable 
v (PLRv) is the number of times a truth 
pattern of v is repeated within the 2N 
rows of the truth table. We call the 
Pattern Length Repetition of the variable 
with the least index in a clause C/Clause 

Set S: Pattern Length Repetition of C/S 
(PLRS/PLRC). 
 

 
 

 
 
Using PDs, let’s try to explain what 
happens when we go from the BDD of 
Clause Set S’’={{x1,x2}{x2,x3}} (Figure 
1-c, top) to the one of 
S={{x1,x2}{x2,x3}{x0,x4}} (Figure 1-b). 
(Figure 1-f) shows PDS’’ and PD{x0,x4}. 

0

1

1 3 5 7 9 1113151719212325272931

{x0,x4}

0

1

1 3 5 7 9 1113151719212325272931

{x2,x3}

0

1

1 3 5 7 9 1113151719212325272931

{x2}

Figure 1-e: Example PDs of different clauses 

Figure 1-d: Smaller growth rate 
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As seen: PDS’’ consists of one self- 
repeating pattern 
P1=“0000111100111111”, where 
PLRS’’=2 (i.e., PDS’’=2 x P1), P1 
representing the concatenation between 
sub-patterns for Clause Sets: 
{2}{2,3}=”00001111”& 
{2,3}=”00111111” in (Figure 1-c, top) . 
When we want to resolve5 this pattern 
with PD{x0,x4}=P2&P3, which has 
PLR{x0,x4}=1, where 
P2=”0101010101010101”, 
P3=“1111111111111111” as seen in 
(Figure 1-f, bottom), it is clear that we 
need P1 to be bit-ANDed against each 
one of P2 and P3. This explains why all 
nodes of the BDD for S’’ had to be 
copied once as can be seen in (Figure 1-
b). Clause {4} is appended there to all 

 
5 Resolving PDf with PDg means: Producing PDh 
such that h=AND(f,g).  

copies of such nodes representing the 
result of bit-AND operation between P1 
and P2.  
 
Obviously: Because PLR{x0,x4} < PLR S’’ 
this Copy-Operation (which we also 
call: Split-Operation or just Split) was 
necessary.  
What about PDs of (Figure 1-d)? They 
are shown in the following (Figure 1-g):  
 

 
 

 
 
 
 

Here the new, to-be-resolved clause 
C={x3,x4} has PDC=8x”0111”, PLRC=4 

0

1

1 4 7 10 13 16 19 22 25 28 31

{{x1,x2}{x2,x3}}

0

1

1 4 7 10 13 16 19 22 25 28 31

{x0,x4}

0

1

1 3 5 7 9 1113151719212325272931

{x3,x4}

0

1

1 3 5 7 9 1113151719212325272931

{x0,x1}{x0,x2}

0

1

1 3 5 7 9 1113151719212325272931

{x0,x1}{x0,x2}{x3,x4}

Figure 1-f: PD of an already processed 
Clause Set S’’ (top) compared to the PD of a 
new clause (bottom) 

Figure 1-g: PD of an already processed 
Clause Set {{x0,x1}{x0,x2}} is bit-ANDed 
with PD of {x3,x4} to form PD of 
{{x0,x1}{x0,x2}{x3,x4}} 
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while PD{0,1}{0,2}=(8x”0”) & (24x”1”) is 
a pattern which repeats itself only once, 
i.e., PLR{0,1}{0,2}=1. This gives us the 
opportunity to resolve the new incoming 
pattern of C with sub-patterns of 
PD{0,1}{0,2} only once and then refer to the 
result of this resolution whenever 
needed. This is reflected in the BDD by 
including node {3,4} (Figure 1-d, 
bottom) as a common sink between two 
constructed branches, thus reducing 
drastically the total amount of unique 
nodes. 
Resuming this motivation example: We 
can use the Pattern Domain of a 2CNF 
formula f (PDf) to explain blow-ups in 
the number of nodes generated by 
sequential resolution procedures which 
use Canonical Orderings to produce 
BDDs. It turns out that resolving a 
clause C with a Clause Set S, where 
PLRC<PLRS necessitates Split-
Operations. Such Operations are 
important causes of BDD blow-ups. In 
the case of S’ above we have also seen 
that sequentially resolving Clause Sets S 
with a clause C does not induce Splits 
when PLRC>PLRS. We call this 
condition: Linear Order (l.o.). The core 
of this work is formally showing that 
Algorithms observing the l.o. condition 
always produce small FBDDs.  
Are there any sources of BDD blow-ups 
other than Split Operations caused by 
procedures not observing l.o. 
conditions? An important part of this 
work is also dedicated to showing that 
nodes which are sinks between branches 
(also called: Common Nodes (CNs)) 
may also cause Splits. Fortunately and 
precisely because of the l.o. condition: 
Those Splits are benign, i.e., they do not 
cost, for each CN, more than a constant 
number of additional nodes per inductive 
resolution step.  

 
6 Algorithm 2SAT-FGPRA in the Theory section 
is the concrete, detailed counterpart. 

II USED METHODS 
This work is a second application of 
ideas presented in [Abdelwahab 2016-1] 
for solving hard problems, the first being 
published in [Abdelwahab 2016-2] 
related to 3SAT. At the core of those two 
publications is a 3SAT-Solver producing 
small FBDDs by enforcing l.o. 
conditions on all resolved Clause Sets. In 
the present work, this Solver is modified 
to be applicable to the 2CNF case and 
may informally be described as per the 
following high-level pseudo-code and 
Flowchart of (Figure 1-h)6: 
PR+: 

Inputs: Arbitrary 2CNF Clause Set S 
Output: FBDD 
Steps: 

1- Use the Renaming and Sorting 
Algorithm (CRA+, Definition 9) to 
convert S to an equivalent l.o. Clause 
Set S’, i.e., Set S’=CRA+(S). 
2- Select the least Literal x from the first 
clause CÎ S’. 
3- Instantiate S’ using partial 
Assignments:{x=TRUE}, {x=FALSE} 
forming left- and right-Clause Sets S1, 
S2, respectively 
4- If either S1 or S2 are evaluated to 
TRUE or FALSE, create left/right 
TRUE/FALSE-nodes in the respective 
case. 
6- If neither S1 nor S2 are TRUE/FALSE 
and are found in a Resolved-ClauseSet-
Store: Call yourself recursively first 
with S1, then with S2, forming leftResult 
and rightResult, respectively. 
Otherwise: Call yourself only for the 
Clause Set is new and not 
TRUE/FALSE and return the BDD 
stored for the other. 
7- Form the finalResult from Clause Set 
S’, leftResult and rightResult. 
 

 
(Figure 1-i) shows the actual resolution 
of F={{x1,x3}{x2,x4}{x0,x2}{x1,x4}{x2,x4}} 
using 2SAT-FGPRA after it is converted 
in to a l.o. Set S=CRA+(F)). 

Algorithm – A2 
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Before going into a discussion of the 
mentioned publications, showing 
differences between methods described 
therein and modifications/adaptations 
used in this work, known state-of-the-art 
literature is briefly described. From the 
vast literature around #2SAT, 
BDDs/FBDDs and NP-completeness, 
we have chosen only those research 
findings which relate to our work or bear 
possible challenges to our results.  

 

FBDD for S 

PRA+: 

2CNF-Clause Set S 

S’=CRA+(S) 

FBDD already exists? Call yourself 
recursively 

forming left and 
right Result 

Return Result 

Least Literal 
Instantiation 

Figure 1-h: Flowchart of Algorithm – A2 (PR+) 
 

Creation of left and right 
Clause Sets which may be 

TRUE/FALSE 

yes 
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II-1 Exponential Lower Bounds on 
         FBDD Construction  Revisited 
 
Most important BDD/FBDD 
properties are known since the 80s 
and 90s of last century and 
represent well established facts 
which contributed to the commonly 
accepted idea that: Some important 
Boolean Functions can only possess 
large BDDs and/or FBDDs and 
there are no ways to overcome this 
restriction. We discuss the 
seemingly apparent contradiction 
between our findings and this 
consensus, despite of the fact that, 
because of the existence of 
polynomial reductions, exponential 
lower bounds proven in literature 
are targeting mainly Boolean 
Functions expressible in k- or 3CNF 
while the work here concerns 2CNF 
formulas.  
Exponential lower bounds for 
BDDs are known for Ordered 
Binary Decision Diagrams 
(OBDDs), which are the best 
studied forms of BDDs and which 
only need one variable order to 
govern instantiations of Clause Sets. 
Alternatively: An FBDD allows the 
flexibility to choose a different 
order for each branch. There are 
many BDD variable ordering 
heuristics in literature, but the most 
common way to deal with ordering 
is to start with something 
"reasonable" and then swap 
variables around to improve BDD 
size. This dynamic variable 
reordering is called sifting [Rudell 
1993]. The overall idea is: Based on 
a primitive "swap" operation that 
interchanges xi and xi+1, pick a 

 
7 N(f,Y) denoting the number of different sub-
functions obtained under all possible 
assignments to Y. 

variable xi and move it up and down 
the order using swaps until the 
process no longer improves the size. 
The reader may have noticed that 
the above procedure PR+ 
(Algorithm - A2) does not perform 
any Variable/Literal selection-trials 
and just proceeds, after converting 
the Clause Set to a l.o. one, by 
instantiating the least Literal of the 
first clause. 
The first exponential lower bounds 
on the size of FBDDs have been 
proven as early as 1984 by [Zak 
1984] and [Wegener 1988]. In his 
seminal paper Bryant also showed 
[Bryant 1986] that integer 
multiplication is a function which 
cannot have a small OBDD 
irrespective of the variable ordering 
used. Later, this result was also 
extended to the FBDD case. A long 
list of papers, which reported 
similar results for Boolean functions 
such as: Hamiltonian-Circuit, 
Perfect Matching, Clique-Only, 
Triangle-Parity, Blocking Sets in 
finite projective planes etc. 
followed or were published in the 
same period. In [Wegener 2000] a 
lower bound technique which is 
influenced by the algorithmic point 
of view following [Sieling 1995] is 
used to explain the methodology 
behind the majority of results. It 
turns out that variants of the 
following observation were 
constantly used: 
 

"Lemma: Let f be a Boolean function of 
n variables. Assume that m is an integer, 
1 < m < n, if for m any m-element subset 
Y of the variables N(f, Y) = 2m holds7, 
then the size of any read-once branching 
program computing f is at least 2m-1." 
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[Abdelwahab 2016-1, Theorem 3] 
shows that lower bounds related to 
the construction of FBDDs obtained 
using the above Lemma are 
bypassed by Sequential Pattern 
Resolution (SPR)-like Algorithms 
using 3CNF representations. The 
direct reason for that being the fact 
that: While the proof of Lemma 
requires the first m-1 levels of any 
FBDD constructed for such a 
function to constitute a complete 
binary tree, SPR-like Algorithms 
using 3CNF formulations always 
form trees which are bound to reach 
leaves after at most k<=3 
instantiation steps in any tree-level 
(Property 8 [Abdelwahab 2016-2], 
Section II). 
Most of the problems for which 
lower bounds were proven using 
this Lemma (for example: the 
“blocking-sets in projective planes” 
problem shown in [Gal 1997]) are 
described in kCNF formulations 
which reflect/preserve the exact 
problem structure, i.e., in the 
projective planes example: Every 
plane is exactly one clause and 
every point is exactly one variable. 
[Abdelwahab 2016-1] calls such 
descriptions preserving all 
properties of decision structures of a 
problem as well as 
interrelationships between those 
structures: Reserved Descriptions.  
Let f be a Boolean Function for 
which an exponential lower bound 
LB on the size of the FBDD is 
obtained, f’ an equisatisfiable 3CNF 
formulation of f. The reasons why 

 
8 Formalizations of the ideas expressed in the 
points here are not attempted to avoid 
unnecessary length. 
9 Lemma could only be applied to the 
blocking Sets problem, because of the 
following combinatory property shown to 
hold for projective planes [Gal 1997]: 

LB isn’t applicable to f’ can be 
informally summarized in the 
following points8: 
1- If f has a reserved kCNF 
description, it is sometimes the only 
way to guarantee that, for any m-
element subset Y of the input 
variables of f, different sub-
functions obtained under all 
possible assignments to Y are truly 
distinct. For example in the 
projective planes case we quote the 
following part of the lower bound 
proof [Gal 1997], page 15:  

“Proof of the theorem. We 
show that for every q-element 
subset A of the variables, N(fΠ, A) = 
2q holds, i.e., each truth assignment 
to the variables in A yields a 
different sub-function on the 
remaining variables. Since each 
line defines a clause of the 
function fΠ, it follows from the 
Fact9 that for an arbitrary q-
element subset A of the variables 
there exist q clauses such that each 
variable from A appears in exactly 
one of them, and each variable 
appears in a different clause.”  
Obviously: Because f’ is formalized 
in 3CNF, a line for projective 
planes with q>3 cannot be 
represented by only one clause 
making the above Argument 
inapplicable. 
2- From the logical point of view, f 
and f’ are not equivalent. This 
means that Deterministic FBDDs 
constructed for them are not 
expected to be equivalent10. It also 

"Fact: Let J={p1,…,pt} be a set of t<=m 
distinct points of the projective plane P, 
then there exist distinct lines {l1,…lt} such 
that for i>=1, j <=t we have pi ∈lj iff i=j." 
10 Let Gf, Gf’ be FBDDs of f, f’ respectively, then: 
f = f’ iff Gf (a) = Gf’(a) for all aÎ{0, l}n, where 
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means: There may be models for f 
which are not models for f’ and vice 
versa. As f and f’ are equisatisfiable, 
they may disagree for a particular 
choice of variables. As a matter of 
fact: A typical equisatisfiable 
translation from kCNF to 3CNF 
usually looks like: 
(A∨B∨x1)∧(¬x1∨C∨x2)∧(¬x2∨D∨E) 
For a k=5 clause C=(A∨B∨C∨D∨E) 
for example. Note that while C has 
a model in which B=TRUE, 
x2=TRUE and all other variables 
including x1 are FALSE, this is not 
a model for the translated 3CNF 
formula. In such constellations: The 
number of variables in clauses of f’ 
are strictly larger than the number 
of variables in clauses of f and 
consequently: Sub-function 
properties, necessary for the 
application of the above Lemma are 
disturbed by the introduction of new 
variables which have no place in the 
definition of f and must be treated 
as Don’t Cares, i.e., variables 
whose truth values don’t matter for 
the overall truth-value of the 
formula. Treating variables as Don’t 
Cares makes the FBDD Non-
Deterministic, causing all lower 

 
Gf(a) denotes the leaf node value obtained from 
Gf for input string a [Wegener 2000]. 
11 It must be mentioned here that 
introducing new variables is known, since 
the 90s, to disturb exponential lower 
bounds obtained for multiplication-BDDs 
for example. In [Burch 1991] a method for 
using BDDs to verify multipliers while 
avoiding exponential complexity is shown. 
Normally the outputs of an n by n bit 
multiplier circuit are represented by BDDs 
with 2n variables, since the circuit has 2n 
inputs. In the method described there, the 
outputs of the circuit are represented by a 
BDD with 2n2 variables, instead. The size 
of this BDD is cubic in n. 
12 Recall: A Deterministic FBDD is a FBDD in 
which every node is marked with a variable 

bounds for Deterministic FBDDs to 
be inapplicable11. 
3- Let LB be an exponential lower 
bound on the size of any Non-
Deterministic FBDD12 constructed 
for f, as the one given in [Sauerhoff 
2003] for example, not necessarily 
using Lemma. Call an efficiently 
constructed Non-Deterministic 
FBDD: pNFBDD and an efficiently 
constructed Deterministic FBDD: 
pFBDD, then: For LB to be 
applicable on procedures using f’, 
something like: “A pNFBDD exists 
for f iff a pFBDD exists for f’” must 
be true13.  
Although starting with a pFBDD for 
f’, a pNFBDD for f is easily 
constructed by erasing all markings 
which represent variables not in f 
(call a Set containing them: Z), the 
other way around is not obvious. 
Starting with a pNFBDD for f, in 
which some nodes are unmarked 
does not give any clue to how 
markings must be put such that a 
procedure produces a pFBDD for f’. 
Correct markings have to be 
properly “guessed” indicating that 
this translation may be hard14. 

name, while a Non-Deterministic FBDD has 
some unmarked nodes [Wegener 2000] . 
13 Note that if f and f’ are equivalent, agreeing on 
all used variables, this is trivially true. 
14 To see this: Suppose Gf is a pNFBDD 
for f and suppose there exists an input a, 
such that Gf(a)=TRUE. This means that 
there is a path P in Gf leading to a TRUE 
node. P may contain unmarked nodes 
{un1,un2,…uni}. If we attempt, using Gf, to 
construct a pFBDD, say Gf’, for f’, we need 
to mark {un1,un2,…uni} with names of 
variables from Z such that a path P’ in Gf’ 
(corresponding to P) leads to a TRUE leaf. 
There are two ways to do so: Either all 
possibilities of assignments for variables in 
Z must be explicitly extended creating in 
the worst case an exponential sub-tree in 
Gf’ rather than only one single path, or 
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II-2 #2SAT Solution Methodologies 
There are two types of approaches 
related to counting problems: Ones 
which aim at improving known 
exponential bounds on finding exact 
solutions and others which seek better 
approximations. As we are presenting in 
this work a method for exact counting, 
we will focus in this section on 
describing the known state-of-art in this 
category and underline differences to our 
proposed method. We discuss also 
results from parametric complexity 
which use some notion of ‘truth patterns’ 
to reduce the effort needed to bound the 
number of solutions more tightly.  
In exact counting, methods based upon 
DPLL-style exhaustive search and those 
based on what is called knowledge 
compilation are distinguished. The 
method presented here can be classified 
as a knowledge compilation method, in 
which a given CNF formula is converted 
into a FBDD from which the count can 
be deduced easily, i.e., in time 
polynomial with regard to the size of the 
formula. One advantage of this 
methodology is that once resources have 
been spent on compiling the formula into 
this new form, complex queries can 
potentially be answered quickly.  
State-of-the-art methods of this type 
are best represented by the ones 
using deterministic, decomposable 
negation normal forms (d-DNNF) 
as described in [Darwiche 2002], 
which are generated by an 
exhaustive version of the DPLL 
procedure called c2d. Those forms 
were created to provide alternatives 
for BDDs, which could, in 
principle, be constructed and then 
“read off” for the solution count by 
traversing the BDD from the leaf 
labeled “1” to the root. BDDs are 

 
different assignments of those variables are 
deterministically tested against f’. Both 

commonly not used for this 
purpose, because of the consensus 
regarding exponential lower bounds 
discussed in the previous section. 
Compilation of a given CNF 
formula F into d-DNNF is done via 
c2d by first constructing a so-called 
decomposition tree, which is a 
binary tree whose leaves are tagged 
with the clauses of F and each of 
whose non-leaf vertices has a set of 
variables, called the separator, 
associated with it. The separator is 
the set of variables that are shared 
by the left and right branches of the 
node, the motivation being that once 
these variables have been assigned 
truth values, the two resulting sub-
trees will have disjoint sets of 
variables. The resulting components 
can then be easily combined using 
AND nodes [Handbook of 
Satisfiability 2009]. In [Beame 
2013] a special case of d-DNNF 
formulas, called decision-dDNNF, 
is shown to be convertible to 
FBDDs with only a quasi-
polynomial increase in 
representation size in general, 
leveraging known exponential 
lower bounds for FBDDs, to 
exponential lower bounds for 
decision-DNNFs. The power of 
decision-DNNFs is separated from 
d-DNNFs and a generalization of 
decision-DNNFs known as AND-
FBDDs is described as well. This 
implies exponential lower bounds 
for natural problems associated with 
probabilistic databases (c.f. [Beame 
2013]). 
Algorithms for specifically counting 
solutions of 2SAT can be found in, e.g., 
[Fuerer 2007]. The idea is an extension 
of a research direction focusing on 2SAT 
problems, where every variable occurs 

options don’t qualify as ‘efficient 
construction’ procedures.  
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x-times at most, obtaining the best time 
of O(1.246069n) for counting models 
and max-weight models, n number of 
variables, achieved also in polynomial 
space. The decisive parameter 
determining the running time of the 
proposed Algorithm is the number of 
degree x=3 nodes. Progress in 
eliminating those nodes is possible when 
there are many of them, i.e., when the 
average degree is higher. In that case: A 
degree 3 vertex in the constructed graph 
with a neighbor of degree 3 is found 
more frequently and they can both be 
eliminated in the same time. The 
improved time bounds for degree 3 
propagate to formulas of higher degrees, 
because the average degree has a 
tendency to shrink during the iterative 
algorithm’s run (c.f. [Fuerer 2007]). 
In [DeItaLuna 2012] a method is 
described where given a formula F, 
#2SAT(F) can be bounded above by 
considering a binary pattern analysis 
over its set of clauses. For each clause 
Ci = {xj, xk}, Ai is a set of binary strings, 
called: ‘binary pattern’, such that the 
length of each string is n, the number of 
variables. The values at the j-th and k-th 
positions of each string, 1 ≤ j, k ≤ n 
represent the truth value of xj and xk that 
falsifies Ci. E.g., if xj ∈ Ci then the j-th 
element of Ai is set to 0. On the other 
hand, If xj ∈ Ci then the j-th element of 
Ai is set to 1. The same argument applies 
to xk. Using this notion of a ‘pattern’ it 
can be shown that for F = {C1, C2,...,Cm}, 
a 2CNF formula, n variables, m ≥ 2: The 
hard cases to answer whether 
#2SAT(F)=k, are given when m>n. This 
is one of the rare occasions in the 
literature of hard problems, where a 
formalized notion of ‘truth patterns’ is 
used to reveal intrinsic properties of 
logical formulas. 

 
15 Note that a Cook-Levin reduction is actually 
parsimonious. Cook-Levin (Restated): For every 

Before going into the next section, where 
we distinguish this work from 
[Abdelwahab 2016-2], we summarize 
important findings of the previous two 
sections in the following points, 
underlining differences between known 
#SAT solutions and our presented one: 
1- Exact counting of solutions can be 
done using exhaustive knowledge 
compilation methods which avoid BDD 
construction, because of the consensus 
that BDDs possess exponential lower 
bounds for important Boolean Functions 
and may thus become large in the worst 
case. 
2- Using an equisatisfiable 3CNF 
representation f’ of a Boolean 
Function f makes lower bounds 
obtained for Deterministic-FBDDs 
of f inapplicable, because of the 
additional variables in f’. 
Polynomial Non-Deterministic 
FBDDs of f fail to capture 
polynomial Deterministic-FBDDs 
of f’, rendering lower bounds for 
Non-Deterministic FBDDs of f out 
of scope as well. This paves the way 
to the usage of SPR-like methods 
constructing FBDDs like the ones 
published in [Abdelwahab 2016-2] 
to efficiently solve #SAT, 
especially knowing that 
conveniently, many of the known 
reductions between NP-complete 
problems, including those related to 
3SAT, are parsimonious, i.e., they 
preserve the number of solutions 
during the translation15. 
3- Independent of the above points: 
The present work is concerned with 
the construction of FBDDs for 
2CNF formulas. To the best of our 
knowledge: There are no lower 
bounds, susceptible to challenge 
our results, for this special case. 

language L ∈ NP, there is a parsimonious 
reduction from L to SAT. 
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II-3 Similarities and Differences 
between previous and current work 
[Abdelwahab 2016-2] was set up to 
prove two related assertions: 
 

1- That SPR Algorithms described there 
(GSPRA+, FGPRA) always produce 
small FBDDs for 3CNF formulas. 
2- That they are efficient 2-
Approximation Algorithms for 
MinFBDD, an NP-complete problem. 
 

Although the first point was enough to 
demonstrate the main theoretical result, 
it was necessary to provide evidence, 
that the used Algorithms have practical 
value as well. Similar to procedure PR+ 
(Algorithm – A2): GSPRA+ and FGPRA 
apply, using CRA+, the l.o. condition on 
all Clause Sets generated during 
resolution. In the same time: Creation of 
new Clause Sets via instantiation is 
solely done using least literals. The final 
output being a special form of DAGs we 
call also here MSRTs.o, whose main 
features are: 
 

a- Nodes contain Clause Sets 
b- Variables in a Clause Set may be 
renamed one or more times in the same 
branch. Sequences of such renaming 
operations are called: Variable Space. 
c- MSRTs.os can be easily converted to 
FBDDs by abstracting the least 
Variable/Literal index of every Clause 
Set. 

 

The essential difference between this 
work and [Abdelwahab 2016-2] is the 
way in which formal concepts are 
defined, namely: Keeping definitions as 
close as possible to Set- and Graph- 
Theory. This facilitates proofs of 
relevant lemmas and makes them more 
accessible to readers than their 
counterparts in [Abdelwahab 2016-2]. 
New proofs for previously not shown 
properties of MSRTs.os (like the fact that 
no N-Splits can exist in such graphs for 
example) are also important additions. 

Table T2 gives an overview of essential 
formal similarities and differences. 
 
Concept, 
Algorithm, 
Proof 

Previous 
formalization 

Current 
formalization 

Linearly 
Ordered (l.o.), 
Linearly 
Ordered, but 
unsorted 
(l.o.u.) Clause 
Sets 

Structural property 
of Clause Sets 

Same as before 
+ Var/Literal 
Index 
comparison 
Relation “<” is 
characterized by 
the Literal 
precedence 
Relation “|” 
(Definition 8.6) 

N-Splits, CN-
Splits, BigSps 

Copies of nodes  Special forms of 
Clause Sets 
occurring in a 
MSRTs.os 
(Definition 6) 

MSRTs.o Special form of 
DAG 

+SR-DAG 
formally defined 
+ Special form 
of SR-DAG 
(Definition 10) 

Variable 
Space (VS), 
CN/MSCN, 
tCN 

-Variable Space: 
Sequence of CRA+ 
Operations, 
-CN: Sink node 
-MSCN: Sink node 
in a VS 
-tCN/tMSCN: 
CNs/MSCNs 
produced in 
Symmetric Blocks  

Same as before 

CRA,CRA+ Properties shown: 
- Termination 
- Correctness 
- Complexity 

Same as before 
+ (x | y) iff (x<y)  
(Lemma 1-b) 
+ S and CRA+(S) 
are 
equisatisfiable 
+ They are also 
equivalent 
(Lemma 2-b,c) 

Lemma 9-a: 
No BigSps 

Shown using “<” 
Relation and l.o. 
property of Clause 
Sets of parent 
nodes of a 
CN/MSCN 

Shown using “|” 
Relation and l.o. 
property of the 
Base Clause Set 
(BS) 

Lemma 9-b: 
No N-Splits 

Not shown Shown using 
new 
characterization 
of Splits 

Lemma 9-c: 
No size>1 
Splits 

Shown using the 
“<” Relation, 
CNAL properties 

Shown using the 
“|” Relation, 
CNAL 
properties and 
BS l.o. property 

Lemma 14: 
Counting 
Solutions 

Not in the scope Shown using 
DAG properties 
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Theorem 1: 
Sufficient 
conditions 
which 
guarantee the 
efficiency of 
SPR-like 
kSAT-
Algorithms  

Not in the scope Shown using 
induction on k 
and (Lemma 11) 

SPR 
Resolution 
procedures  

GSPRA+,FGPR: 
-produce optimal 
Top-Parts 
-their output is 
equivalent  
- FGPRA is 
efficient, 2-
approximative to 
MinFBDD  

2SAT-GSPRA+, 
2SAT-FGPRA: 
1- Top parts are 
not shown to be 
optimal 
2- 2SAT-
FGPRA 
simulates 2SAT-
GSPRA+ 
correctly 
(Lemma 11-a) 
3- 2SAT-
FGPRA is 
efficient 
(Lemma 11-b) 

 
 
II-4 How to read this paper 
The Conjecture formulated in the 
introduction of this work includes claims 
which bear important consequences 
requiring an extra effort to organize 
formal concepts and/or proofs thereof in 
such a way, that the overview is not lost, 
while readers attempt to check 
correctness. For this purpose the 
following tools are made available for 
use throughout this whole document: 
 

1-All formal Concepts, Algorithms, and 
Proofs are explained with examples 
while expressing them as close as 
possible to Set Theory for formal 
concepts and concrete near-to-C pseudo-
code for Algorithms, highlighting exact 
formal definitions always in bold. Cross-
References to definitions are availed to 
simplify reading.  
2- Lemmas, Figures and References are 
cross-referenced (in pdf-file format). 

 
16It is commonly known that BDDs admit 
efficient Algorithms for counting solutions after 
being built. Therefore: Verifying that node 

3- All Acronyms used are highlighted in 
blue bold when they are defined for the 
first time. 
4- All concepts are listed in a 
comprehensive table in Appendix A, 
where Acronyms, formalizations, their 
place in definitions (including page 
numbers and links), lemmas using them 
as well as their actual purpose are 
included.  
5- Selected lemmas and their 
dependencies on formal concepts are 
listed in Appendix B. 
6- A table of content (first page) is 
provided to facilitate overview as well as 
referencing of content.  
7- (Figure 1-j) below shows 
interdependencies between lemmas and 
links them to Theorem 1. Although all 
lemmas are important, parts marked 
green represent the most crucial pieces 
of information, sufficient alone to 
produce the main result one time, 
followed in importance by blue marked 
parts. Coloring parts intends to help 
readers first find critical flaws in our 
argumentation more easily and second 
distinguish between the two presented 
results in the following way: 
i- In a first quick scan, a reader may wish 
to consider only the green path, where 
one can verify the O(M6) bound of 
(Lemma 10) on the upper size of the 
FBDD/MSRTs.o, shown to hold under 
the assumption that (Lemma 9-c) is 
relaxed, i.e., only N- and BigSps cannot 
be produced, as follows16: 

 
a- Concepts: l.o./l.o.u. 2CNF Clause Sets 
(Definition 1), (Variable Space) , 
(CNs/MSCNs) , Splits (N-, as well as 

counts cannot exceed O(M6) for any 2CNF 
formula is the essential effort a reader may want 
to do in order to accept the second proof of the 
main result of this work, i.e., Theorem 1-b.  

Overview of differences and similarities to our 
previous work – T2 
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CN-Splits), (Alignment MSRTs.os) are 
all well-defined.  
b- Algorithms (CRA), (CRA+), (2SAT-
GSPRA+) and (2SAT-FGPRA) are 
sufficiently detailed and their way of 
work clearly described. 
c- It is always possible to convert an 
arbitrary 2CNF Clause Set to a l.o. one 
using CRA+ (Lemma 2-a). If necessary, 
this is done in each recursive step by 
2SAT-GSPRA+. CRA+ delivers Clause 
Sets which are not only equisatisfiable 
(Lemma 2-b), but also equivalent 
(Lemma 2-c) to the original Clause Set. 
CRA+ is also efficient (Lemma 3). 
d- Mappings produced by CRA are 
monotone and the Literal precedence 
Relation ‘|’ is an exact characterization 
of the trivial Index comparison Relation 
‘>’ (Lemma 1-a, b). This information is 
used in the crucial proof of (Lemma 9-
a). 
e- Splits are the actual causes of 
exponential behavior. While N-Splits are 
taken care of in the definition of the 
Canonical Ordering criteria (especially 
the l.o. condition as has been seen) and 
thus avoided altogether by 2SAT-
GSPRA+ (Lemma 9-b), CN-Splits may 
still occur.  
f- CN-Splits cannot occur for nodes of 
rank>1 (BigSps) (Lemma 9-a). 
g- 2SAT-GSPRA+ repeats the 
construction of sub-trees for Clause Sets 
of sub-problems when they are found to 
be breaching the l.o. condition. This 
makes sure that any CN/MSCN at size-
level j is only a CN/MSCN at size-level 
j-1 augmented by a newly resolved 
clause during re-construction (Lemma 5-
b), i.e., the number of CNs/MSCNs is 
preserved (in the worst case) when they 
move up the hierarchy of size-levels. 
h- No more than O(M2) nodes can be 
created in the lowest j=1 size-level 

during the whole process of resolution 
(Lemma 7) 
i- Rank 1 nodes (i.e., those which have 
only unit clauses) produce only O(M) 
new nodes when they split (trivial) 
j- All this leads to the O(M6) upper 
bound of (Lemma 10, point 4). 
k- 2SAT-GSPRA+’s repetitive 
construction of sub-trees causes 
redundant operations which are avoided 
altogether by 2SAT-FGPRA. 2SAT-
FGPRA is a practical Algorithm in 
which all clauses of a Clause Set are 
instantiated with values of the chosen 
least Literal in the same time. It 
simulates 2SAT-GSPRA+ correctly 
(Lemma 11-a). 
l- The worst implementation of 2SAT-
FGPRA requires comparing all created 
nodes with each other and always using 
CRA+ to rename their Clause Sets, 
making the overall asymptotic 
complexity O(M13), because Lemma 9-c 
is relaxed (Lemma 11-b). 
ii- In a second scan readers may want to 
study (Lemma 9-c) (blue path), which 
shows that CN-Splits cannot occur in 
size-levels j>1. This reduces the upper 
bound of the nodes count of the 
FBDD/MSRTs.o to O(M4): 

a- As before: The only new nodes 
added by 2SAT-GSPRA+ to the lowest, 
size-level j=1 in any step and at any time 
can’t be more than O(M2) nodes. As 
2SAT-GSPRA+ is sequential: Those 
nodes form, at each step, the basis for 
size-j-level nodes, j>1, and may be 
propagated up in the hierarchy of levels, 
making the maximum amount of nodes 
in each such level j during the whole 
resolution process not exceeding the 
upper bound of nodes at level 1 (Lemma 
5-c).  

b- Either trivial- or rank 1, size 1- 
CNs can split (Lemma 8, Lemma 9-b) 
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making the maximum amount of nodes 
added in this way to the lowest level also 
O(M2), since one such Split causes, in 
the worst case, a constant amount of 
nodes to be created on the size-level it 
occurs in.  

c- The final FBDD has in the worst 
case a total unique node count of only 
O(M4) (Lemma 10). 

d-To count Assignment possibilities: 
An Algorithm Count2SATSolutions 
traversing in the worst case all nodes and 
edges of the FBDD/MSRTs.o is used. As 
both 2SAT-GSPRA+ and 2SAT-FGPRA 
are complete, Truth-Table equivalent 
Algorithms (Lemma 12), 
Count2SATSolutions is shown to be 
counting exact solutions correctly 
(Lemma 13). To do so: It requires O(M9) 
or O(M13), in case Lemma 9-c is relaxed 
(Lemma 14). 

e- One main result, (Theorem 1-a) 
shows conditions under which SPR-
Algorithms solving kSAT-problems 
become efficient (green path). It turns 
out that avoiding both N- as well as big 
CN-Splits are sufficient conditions for 
polynomial time performance. In the 
same time: The uniform way of 
expressing node counts and time 
complexity of base case k=2 in terms of 
base case k=1 makes it possible to 
demonstrate P=NP by formulating and 
using the strongest induction hypothesis 
possible. This is what is gained by 
relaxing Lemma 9-c. 

f- Because Count2SATSolutions is in 
P (both green and blue paths), P=NP 
follows also this way (Theorem 1-b). 
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(Lemma 5-b): 
For all M>1: A 
node [q] of size 
M is 
CN/MSCN iff 
there exists 
CN/MSCN [q’] 
of size M-1 
augmented in 
size by a clause 
C such that: 
[q]=[q’] 

Properties of CRA+ 

(Lemma 2): CRA+ translates 
2CNF Clause Sets to equivalent 
Sets 

(Lemma 3): CRA+ is in 
O(M2(log (M+N))) 

(Lemma 4): CRA+ terminates 
always producing stable 2CNF 
Clause Sets 

(Lemma 6): In a 
MSRTs.o: Nodes of sizes 
1,2 are all aligned 

(Theorem 1): 

a- kSAT-GSPRA+/kSAT-
FGPRA uniformly produce 
small MSRTs.os 
b- #2SAT is in P (Lemma 14): Counting 

Solutions in a MSRTs.o 
is in P 

(Lemma 11-b): 2SAT-
FGPRA takes a polynomial 
number of primitive 
operations to produce the 
MSRTs.o. of an arbitrary 
2CNF Clause Set S 

(Lemma 10): O(M4) is an 
upper bound of the number of 
unique nodes created by 
2SAT-GSPRA+ for a 2CNF 
Clause Set S. Moreover: This 
bound remains polynomial, 
i.e., O(M6), if Splits are 
admitted which are not 
BigSps. 
 

(Lemma 11-a): 2SAT-
FGPRA simulates 
2SAT-GSPRA+ 
correctly 

(Lemma 9): While 
2SAT-GSPRA+ resolves 
a 2CNF Clause Set S 
a) No big Splits can 
occur  
b) - N-Splits can’t exist. 
 - Rank-1, Size-1 CNs 
can split 
c) Rank-1, Size-1 CNs 
augmented to sizes>1 in 
step k cannot split in 
steps >k. 
 

(Lemma 7): The Upper 
bound of nodes created 
at level 1, without 
counting Splits is 
RCC2-SAT *M2 

(Lemma 1):  
a-CRA produces monotone 
Mappings 
b- (x|y) iff x<y 
c- …. 

(Lemma 5-c): If Splits 
are not counted in any 
size-level j>1 then: 
upj<=up1 

(Lemma 8): tCNs and 
tMSCNs can be avoided 
when DB sorting 
condition is used 

(Lemma 12): 2SAT-
GSPRA+ and 2SAT-
FGPRA are TT-
equivalent 

(Lemma 13):  

Count2SATSolutions is 
correct 

Figure 1-j: Interdependencies of Lemmas 
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III THEORY 
III-1 Definitions 
Definition 0: (Nomenclature and Basic): 
Variable, Literal, Clause, 2CNF 
Formula/Clause Set, Truth 
Assignment, Partial Assignment, 
Restricted Assignment, 2SAT Decision 
Problem, Graphs, Vertices/Nodes, 
Edges, adjacent Vertex, Source, Target, 
reachable, Child, Parent, Base Node, 
Path, Branch, acyclic, Length of 
Path/Branch, Directed Acyclic Graph, 
Source Path of node n, Level of node n 
in a DAG, Level of edge e in a DAG, 
Topological Ordering of a DAG, 
Sequential Resolution DAG, 2CNF 
Clause Set of a node, Base Clause Set of 
a node, TRUE-DAG, FALSE-DAG, 
rankC, rankNode, Size of a node n, Size 
of a 2CNF Clause Set S, Top-Part of a 
SR-DAG, LeftDAG, RightDAG, literals 
in a 2CNF Clause Set S, literals of a 
2CNF Clause Set S to the left of Literal 
x, SortOrder, Head-Literal, Tail-
Literal, Connectivity of a Literal x in 
2CNF Clause Set S, Permutations of a 
Clause, Resolution Complexity 
Coefficient, Instantiations of literals, 
Satisfiability, Derivations of a Clause, 
Linear Derivations of a Clause, 
InstSimple, InstSimpleC, Convert a 
Clause to SR-DAG, First occurrence of 
Literal x in a 2CNF Clause Set S, Select 
a Literal x of a 2CNF Clause Set S 

 
Definition 0.1: Consider a finite Set of 
Boolean variables Var={x1, x2, . . . xn}  

a- A Literal is either a Boolean 
variable xi or its negation ¬xi. Indices 
deduced from enumerations are also 
used to stand for Literal names. The 
relation ‘a<b’ expresses the fact, that 
index a of some Literal is smaller than 
index b of another in a given 
enumeration. 

b- A clause is a disjunction of 
literals. For example, (x1 ∨ x2) is a clause.  

c- A Formula/Clause Set in 
conjunctive normal form (CNF) is a 
propositional formula in which clauses 
are connected using the Boolean AND 
operation. For example: (x1 ∨ x2) ∧  
(x2 ∨ ¬x3) ∧ x5 is a CNF formula.  

d- A formula ϕ is a 2CNF when 
every clause has exactly 2 literals. For 
example (x1∨x2)∧(x2∨¬x3) is a 2CNF 
formula, but (x1∨x2∨¬x4)∧(x2∨¬x3)∧(x5) 
is not. 

e- A Truth Assignment is a total 
Function f:Var =>{0,1}. When f is 
partial, the assignment is called Partial 
Assignment. When f is restricted to only 
one variable it is called Restricted 
Assignment. 
 

Definition 0.2: 2SAT Decision Problem: 
Given a 2CNF formula ϕ, is there a Truth 
Assignment such that ϕ evaluates to 
true? 
 

Definition 0.3: A graph G = (V,E) 
consists of a finite set of Vertices/Nodes, 
V, and a finite set of Edges E. 
 

• Each edge is a pair (v,w) where v, w Î V 
• A Directed Graph, or Digraph, is a 

graph in which the edges are ordered 
pairs: (v, w) ≠ (w, v) 

• In the Digraph: b is called adjacent to 
a when there exists an edge (a, b)ÎE, 
also: 
• Node a is not adjacent to node b. 
• Node a is called predecessor of 

node b, node b is a successor of 
node a 

• The Source of the edge is node a, 
the Target is node b.  

• Node b is called reachable from 
node a if b is adjacent to a or there 
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is a non-empty list <e1,e2,…,en>17 
of edges connecting, indirectly, a 
to b. Node b is also called in that 
case Child of node a, a Parent of b. 
Boolean Predicates 
Child(n1:Node, n2:Node), 
Parent(n1:Node,n2:Node) are 
formally used to express this fact 

• Base Node (BN) of G is the source 
of its first edge. 

• A Path/Branch is a list of vertices 
<w1, w2,…wn> such that for all the 
edges:  
(wi, wi+1)ÎE, 1 <= i < n, and each 
vertex is unique except that the 
path may start and end on the same 
vertex if G is cyclic. 

• An acyclic Path is a Path where 
each vertex is unique  

• The length of the Path/Branch is 
the number of edges along the path 

• A directed graph which has no 
cyclic paths is called a DAG 
(Directed Acyclic Graph). 

• Source Path of a node n in a DAG 
(SPn) is a list of edges connecting 
n to the Base Node: SPn=<e1, 
e2,…em>, ei:Edge. A node may 
have several non-empty Source 
Paths and is always reachable from 
the Source. 

• Level of node n (Ln) in a DAG is 
an integer representing the number 
of edges in the longest Source Path 
connecting n to the Base Node. It 
is given by: 
Ln=Max(length(SPn1)..length(SPnk)) 
where any SPni is a Source Path of 
n.  

• Level of an edge e (Le) in a DAG: 
Le= LSr+1 if Sr is the Source of e.  

 
17 <obj1,obj2,…objn>, where obji:Type is the 
notation used to denote lists of Objects of Type. 
Type shall be omitted when obvious. 

• A Topological Ordering (TO) of a 
DAG is an ordering of its nodes 
such that:  
∀e:Edge, e=(vi,vj), vi,vjÎV: i< j. 

• A DAG formed for a 2CNF Clause 
Set BS and whose nodes contain 
2CNF Clause Sets is called a 
Sequential Resolution18 DAG 
(SR-DAG or SR-DAGBS), 
i.e.,∀n:NodeÎd:DAG: ∃S, S is 
2CNF Clause Set, S is the Clause Set 
of n (2CNFn). BS is 2CNFBN. 

• A TRUE-DAG is a SR-DAG with 
only one node labeled TRUE and 
whose Clause Set is empty. A 
FALSE-DAG is a SR-DAG whose 
only node is labeled FALSE and 
whose Clause Set is empty as well. 

• rankC: (C:Clause) => N is a 
Function returning the number of 
literals contained in a clause. 
rank2CNF, rankNode are similar 
Functions returning the maximum 
number of literals in any clause in 
the 2CNF Clause Set of a node.  
∀n:NodeÎd:SR-DAG: 
RankS=Rankn=Max{rankC(C1).. 
rankC(Cm)}, C1,..,CmÎS, S is 2CNFn 

• The size of a node n in a SR-DAG 
(Sizen) is an integer representing 
the number of clauses in the Clause 
Set of that node. The same integer 
is used to denote the size of a 
Clause Set S (SizeS).  
In a SR-DAG of a 2CNF Clause 
Set S of size M the set of all nodes 
containing Clause Sets of sizes M 
or M-1 is called the Top-Part of the 
SR-DAG. Topd:SR-DAG={n:NodeÎd | 
∃S, S is 2CNFn, SizeS=M or 
SizeS=M-1, SizeBNÎd=M} 

18 The word “Resolution” and/or any of its 
declinations are not referring in any place of this 
work to the classical Resolution procedure used 
in Logics. 



Abdelwahab, N. 
 

 

 

24 

24 

• LeftDAG: (n:Node)=>SR-DAG  
Is a Function which, given any 
node n of a SR-DAG, returns the 
SR-DAG of its left Child if 
existent. RightDAG is defined 
similarly. 

• SubTree: (n:Node)=>SR-DAG  
Is a Function which, given a node 
n of a SR-DAG, returns the portion 
of the SR-DAG starting with n. 

 
Definition 0.4: For a 2CNF Clause Set S 
of the form: 
{{a1,b11}{a1,b12}..{a1,b1i} 
  {a2,b21}{a2,b22}..{a2,b2j}… 
  {am,bm1}{am,bm2}....{am,bmk}}19 
 

a) LIT: (S) => Var  
Is a Function mapping S to the Set of 
all unique Literal Names/Indices in S 

b) LEFT: (x:Literal Î C, C:ClauseÎ S) => 
Var  
Is a Function mapping Literal x, and 
clause CÎ S to the Set of all variable 
Names/Indices occurring in the 
string representation of S to the left 
of Literal x in clause C. Right(x,C) is 
defined similarly. 

c) SortOrder:(C:ClauseÎ S,S)=>int 
Is a Function mapping clause CÎ S 
and S to an integer number 
representing the position of C within 
S. 

d) First Literal in any clause is called 
Head-, last ones is called Tail-literal 
(HL, TL).  
HL={L:Literal | CÎ S,C={L, t}, 
t:Literal} 
TL={L:Literal | CÎ S,C={t, L}, 
t:Literal} 
Connectivity:(x:LiteralÎ S,S)=>int 
Is a Function mapping a Literal x in a 
Clause Set S (also: Connectx,S) to the 

 
19 AND and OR connectives are omitted as per 
known convention. 
20 Recall that nPr=n!/(n-r)!  

number of clauses of S in which the 
Literal x appears 

e) For any clause CÎ S the cardinality of 
the Set of all clauses which contain 
permutations of literals in C (permC) 
is called Resolution Complexity 
Coefficient (RCC). Both are formally 
defined as follows: 
- permC={CÎ S | C={a, b} or C={b, a} 
or C={a} or C={b}, a, b:LiteralÎC} 
-RCCk-SAT=kPk+kPk-1+kPk-2….+kP1 
i.e., for 2SAT 
RCC2-SAT= 2P2 + 2P1 = 420 

f) Instantiations of literals, 
Inst:(A:Assignment, S) => 2CNF Clause 
Set are Functions using Total, Partial 
or Restricted Truth Assignments to 
create new 2CNF Clause Sets. They 
substitute the literals in Clause Sets 
by Boolean values given in the 
Assignments. The clause resulting 
from applying an instantiation on any 
CÎ S is called a Derivation of C. It is 
called Linear Derivation if 
consecutive instantiations respect the 
linear order of literals in C21. If 
consecutive instantiations result in a 
clause containing only truth values 
and no literals, the derivation is 
called: Empty Derivation. 
Derivations containing one TRUE 
value are called Positive Derivations, 
those containing only FALSE values 
are called Negative Derivations. 
Empty, Positive and Negative 
Derivations can be directly evaluated 
to TRUE or FALSE. In this work we 
assume that this evaluation is 
embedded in the Inst function. If this 
evaluation results in the TRUE, S is 
said to be satisfiable by A. When 
Partial Assignments used by Inst are 
related to only one variable, Inst is 

21 Examples of derivations of clause C={x, y } 
for any ordered indices x, y are {x} and {y} 
respectively of which only the latter is a linear 
derivation if the order is given by: x<y. 
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called InstSimple. InstSimple can also 
be restricted to only one clause.  

 

Formally: 
1) InstSimpleC:(A:Assignment,C:Cla

use) => Clause  
2) Derivation of a Clause C 

isÎ{C’:Clause | C’Î permC}.  
3) Linear Derivation of C is Î 

{C’:Clause| C’={a,b} or C’={b} , a, 
b:LiteralÎC, a<b}  

4) Empty Derivation of C is Î 
{C’:Clause |C’={TRUE} or 
{FALSE} or {TRUE,FALSE} or 
{FALSE,TRUE} or 
{FALSE,FALSE} or 
{TRUE,TRUE}}  

5) Positive Derivation of C is Î 
{C’:Clause| TRUE ÎC’} 

6) Negative Derivation of C is Î 
{C’:Clause| C’={FALSE,FALSE} 
or C’={FALSE}} 

7) Every Derivation of C is 
Î{C’:Clause| C’Î permC or C’Î 
Empty Derivation of C} 

g) Convert(C:ClauseÎS)=>SR-DAG. Is 
a Function mapping a 2CNF clause 
C={a1,b11} to a SR-DAG by 
substituting in two subsequent simple 
instantiation steps first a1 with TRUE 
and FALSE creating Clause Sets and 
placing them in the respective left- 
and right-nodes of the SR-DAG and 
then doing the same for b11 as in 
below (Figure 2): 
 

 
 

 
22 Alternatively: Clauses in S can be enumerated 
from left to right. In that case subscripts i,j are 
omitted and only one index is used. This is the 

h) FIRST(L:Literal, S)=>int 
Is a Function mapping a Literal to its 
integer position (starting from the 
left) in the string representation of S. 
FIRSTC is the version of this function 
which returns the index of the clause 
in which L appears for the first time 
in the current enumeration of clauses. 

i) SELECT(S)=>int 
Is a Function selecting a Literal from 
LIT(S). 

 

Definition 1: Almost Arbitrary-, Linearly 

Ordered-, Linearly Ordered, but Unsorted 

Clause Sets, Block, Block-Sequence, Block 

Literal, Symmetric Block, Dissymmetric 

Block, DB Sorting Condition 
 

For a 2CNF formula S of the above form, 
S is called linearly ordered (l.o.) if the 
following Conditions hold: 
 

a) ∀ai,bij∈	Ci,j: ai<bij, i.e., Literal 
Names/Indices are sorted in 
ascending order within clauses22. 

b) S is sorted by ai & bij in 
ascending order taking into 
consideration negation signs23. 
Formally: ∀i,j,x,y: if i<j then 
L2∈Cj,x >= L1∈Ci,y, where L2 is 
HL of Cj,x and L1 HL of Ci,y 
SortOrder(Cj,x,S)> 
SortOrder(Ci,y,S) 

c) ∀xÎLIT(S),∀Ci,jÎS: 
if x ∉ LEFT(x,Ci,j) then 
∀yÎ LEFT(x,Ci,j): x>y 
(all new Names/Indices of literals 
occurring for the first time in any 
clause of S are strictly greater 
than all the Literal 
Names/Indices occurring before 
them in S). 

d) S is a Set, i.e., clauses 
appear only once in S.  

way clauses are referred to in the rest of this 
paper.  
23 i.e., {1,2} comes before {1,3} or {¬1,3} and 
{¬1,2} before {1,2} or vice versa. 

Figure 2 
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If S fulfills Conditions a), c), d), but not 
b) it is called linearly ordered, but 
unsorted (abbreviated l.o.u.). If S fulfills 
Conditions a), d) only it is called almost 
arbitrary (a.a.). Clause Sets of the form: 
S={{ax,bx1}{ax,bx2} .. {ax,bxi,}} are 
called Blocks and are referred to by the 
name of the leading Literal (in this case 
S is called ax-Block). Clause Sets of the 
form: S={Ba…Bn} are called Block-
Sequences (Bseq). ax is called Block-
Literal. Clauses having ax as leading 
Literal are said to belong to the ax-Block. 
A Block Bx is called Symmetric Block 
(SB) if ∃A: Assignment such that:  
instSimple(A:{X=TRUE},Bx}= 
instSimple(A:{X =FALSE}, Bx} 
i.e., -ve and/or +ve instantiations of 
Block Literal x result in the same Clause 
Set. It is called Dissymmetric Block 
(DB) if ∃A:Assignment such that: 
instSimple(A:{X=TRUE},Bx}=S1, 
instSimple(A:{X =FALSE}, Bx}=S2 and 
either S1 ⊆ S2 or S2⊆ S1.  
i.e., -ve and/or +ve instantiations of 
Block Literal x result in Sets S1, S2 and 
one of them is included in the other. If a 
DB Bx is sorted such that all clauses 
containing –ve instances of Literal x are 
placed before all those containing +ve 
instances or vice versa, this condition is 
called: DB Sorting Condition.  
 
Definition 2: 2SAT-GSPRA Procedure, 

Align Procedure, Name Literal, Least Literal 

Rule, Edge Literal, Branch Literal, Base 

Clause Set, Variable Ordering, Canonical 

Ordering 
 

The 2SAT-Generic Sequential Patterns 
Resolution Algorithm (2SAT-GSPRA) 
applied to an arbitrary Set S of 2CNF 
clauses consists of the following 
procedure: 
 
2SAT-GSPRA: 

Inputs: Arbitrary 2CNF Clause Set S of size M 
Output: SR-DAG 
Steps: -  
1- convert arbitrary clauses in S to a.a. ones 

(only sorting literals inside each clause).  

2- choose a clause C0 Î S 
3- convert C0 to a SR-DAG using Convert(C0)  
4- set IRT (Intermediate Resolution Tree) = 

SR-DAG produced in 3 
5- ∀ Ci Î S (one by one) 

  IRT=Align(IRT , Ci) 
6- return IRT 
 

Align (SR-DAG, C): 

Inputs: An SR-DAG with base-node n and S 
2CNFn, an a.a. 2CNF clause C 
Outputs: SR-DAG 
Steps: - 
If (SR-DAG=FALSE-DAG)  

Return FALSE-DAG 
else 
  If (SR-DAG=TRUE-DAG) 
  Return Convert (C) 

else 
{ <bracket-1> 
Update S in node n with C: S=S ∪ C 
X=SELECT(S) such that X is the least 
Literal of S 
leftC=instSimpleC({X=TRUE},C) 
rightC= instSimpleC({X=FALSE},C) 
if (leftC=empty)  

(i..e. C evaluated to TRUE via 
InstSimple)  
leftResult=LeftDAG(n) 

   else 
  If (leftC=Nil) 

(i..e., C evaluated to FALSE 
via InstSimple)  
leftResult=FALSE-DAG 
else  
 
{<bracket-2> 
leftResult= 
align(LeftDAG(n), leftC) 

}<bracket-2> 
if (rightC=empty)  

rightResult=RightDAG(n) 
   else 
  If (rightC=Nil) 

rightResult=FALSE-DAG 
else  
{<bracket-2> 
rightResult= 
align(RightDAG(n), rightC) 

}<bracket-2> 
Result=SR-DAG formed from node n, left- and 
rightResult 
Return SubTree(Result) 
}<bracket-1>  
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1. A node in a SR-DAG is symbolized 
by [x] if the lead clause in its Clause 
Set is headed by a least-Literal x. 
Moreover: x is called the Name 
Literal (NL) of this Clause Set/node. 

2. Edges going out of a SR-DAG node 
[x] are marked with x and represent 
instantiations of the NL x of the 
Clause Set S of that node (this fact is 
called the Least-Literal/Head-Clause-
rule of S or just Least-Literal Rule of 
S, LLRS). Formally:  
NL=LLRS={i:Literal |∃BS: 2CNF 
Clause Set, ∃n:NodeÎSR-DAGBS, S is 
2CNFn, SELECT(S)=i and 
∀xÎLIT(S): i<x} 

3. Literals on edges of branches leading 
indirectly to a node n are called 
branch-literals of n while literals on 
edges connected directly to n are 
called edge-literals of n. Every edge-
Literal is a branch-Literal, but not 
vice versa. 

4. A variable ordering of a problem p 
(∏p) expressed as a 2CNF Clause Set 
S and resolved by any resolution 
procedure PR is a list of integers 
representing indices of 
Literal/variable names indicating 
priorities of instantiations of 
literals/variables of S used in PR. 
Formally: ∏p=<i,j,k,…> where 
i,j,k,…ÎVar such that i<j<k<…. 

5. If ∏p represents the canonical, truth 
table ordering of variables the 
following notation is used: ∏cp. As 
the 2SAT-GSPRA procedure 
described above always uses LLRS to 
instantiate Clause Sets S, it obviously 
uses ∏cp 
 

The following example shows for 
2CNF Clause Set 
BS={{0,1}{2,3}{1,2}} the first steps 
of 2SAT-GSPRA(BS): 

A) C0={0,1} is converted to a SR-DAG 
identical with (Figure 2) (replace a1 
by 0 and b11 by 1) using Convert(C0), 
where node n0 contains Clause Set 
{{0,1}}, n1 is TRUE-DAG, n2 
contains Clause Set {{1}}, n3 is 
TRUE-DAG and n4 is FALSE-DAG 

B) Align(SR-DAG{0,1},{2,3}): 
a) S={{0,1}} ∪ {2,3}={{0,1}{2,3}} 
b) least Literal x=0 
c) leftC={2,3} 
d) rightC={2,3} 
e) IRT=leftDAG(n0)=TRUE-DAG 
    (the DAG of node n1) 
f) leftResult=Align(TRUE-DAG,{2,3}) 

Ø Return Convert({2,3}) 

g) IRT=rightDAG(n0) 

h) rightResult=Align(IRT,{2,3}), node=n2 

i) S={{1}} ∪ {2,3}={{1}{2,3}} 
ii) least Literal x=1 
iii) leftC={2,3} 
iv) rightC={2,3} 
v) IRT=leftDAG(n2)=TRUE-DAG 
    (The DAG of node n3) 
vi) leftResult=Align(TRUE-DAG,{2,3}) 

Ø Return Convert({2,3}) 

vii) IRT=rightDAG(n2)=FALSE-DAG 
viii) rightResult=Align(FALSE-DAG,{2,3}) 

Ø Return FALSE-DAG 

ix) Result=SR-DAG formed from 
      node n2, left- and rightResult 
x) Return SubTree(Result) 

 
i) Result=SR-DAG formed from node n0, 
   left- and rightResult 
j) Return SubTree(Result) 
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Definition 3: Sequentially Ordered SR-

DAG, Strongly Ordered-, Loosely ordered 

2CNF Clause Sets 
 
An SR-DAG of a Set S of 2CNF clauses 
is called sequentially-ordered if  
∀S, n	∈SR-DAG, S is 2CNFn: 
S={Ci,Cj,…CM} for some 
i<j<….<M’, M’<=M. M number of 
clauses in S, Cx’s are clauses or 
derivations of clauses enumerated 
from left to right in S. 
An SR-DAG of a Set S of 2CNF clauses 
is called strongly ordered (s.o.) if ∀S, 
n	∈SR-DAG, S is 2CNFn: S is linearly 
ordered (l.o.) (Figure 3, right). In such 
case the Set S is also called strongly 
ordered. Strongly ordered Sets are 
always linearly ordered, the inverse is 
not always the case, i.e., some l.o. Sets 
may have Clause Sets in their SR-DAGs 
which are not l.o. If a Set S has a base 
Clause Set which is l.o. while some other 
Clause Sets in its generated SR-DAG are 
l.o.u., then S as well as its SR-DAG is 
called loosely ordered (lo.o., Figure 3, 
left), e.g.: Loosely Ordered SR-DAG: 
∀S, n	∈SR-DAG, S is 2CNFn: S is 
either l.o. or l.o.u. 

Figure 3: lo.o. and s.o. Trees 
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X Y Z …….. 

Q 

Definition 4: Common Node, Head-CN, 

Tail-CN, Trivial-CN, Supported CN, 

Supporting Parent, Direct Parent, Direct 

Child, Double-Sided CN from the perspective 

of x, Distinguished Literal, Single-Sided CN 

from the perspective of x, Non-Distinguished 

Literal, CN-Augmenting Literal 

 
A node [q] is called Common Node (CN) 
in a SR-DAG of a Set of 2CNF clauses S 
if ∃n1,n2	∈SR-DAG: [q] adjacent to both 
n1 and n2, i.e., [q] becomes (in step k of 
the resolution procedure) a common 
child to two or more nodes [x], [y], [z], 
… (Figure 4). This happens when 
x,y,z,… literals are replaced by TRUE or 
FALSE in their respective Clause Sets. 
The common-node [q] contains the first 
appearance of its name Literal (NL) q in 
all branches of the SRT containing 
[x],[y],[z],.. 
 
 
 
 
 
 

Figure 4: Common-node generated in <=k. 
 

Types of common-nodes for 2CNF 
clauses are Head- and Tail Common-
nodes (HCNs, TCNs). 
 

More precisely: 
 

- A CN [q] is called HCN if its Clause 
Set has a leading/head clause C∈S, 
NL q is HL of C 

- A CN [q] is called TCN if its Clause 
Set has a leading/head clause C’ 
which is a derivation of a clause C∈
	S, NL q is TL of C 

 

(Figure 7, upper part) shows nodes n1,n2 
not connected. They both get 
instantiated through their least-literals 
a,b to different directions in the SR-
DAG. Any further clause {x,y} in steps 
>k will keep this situation intact, since a 
and b remain the least-literals in their 
respective Clause Sets and cannot be 
bypassed by clause {x,y} in the new tree. 

(Figure 7, lower part) shows a situation 
where both nodes are merged in steps >k 
(right) as the new clause {i,a} belongs to 
a block Bi parents of both nodes were 
instantiating in steps <=k. The added 
clause makes N1 equivalent to N2 as 
seen. We call those types of CNs: Trivial 
Common Nodes (tCNs). They are 
formed in SBs and are included in the 
Properties/Lemmas dealing with the 
generation of CNs. Formally: A node 
[q]	∈SR-DAG is called Trivial Common 
Node (tCN) if ∃n	∈	SR-DAG, S is 2CNFn, 
S is SB, Child([q],n)=TRUE 
A CN [q]	∈SR-DAG with S=2CNF[q], 
produced in steps <=k, is called 
supported in a step l>k if ∃C:Clause, 
C∈Bx such that: S=S ∪ C in step l>k 
while in steps <=k: ∃n	∈SR-DAG, 
Parent(n,[q])=TRUE, S’ is 2CNFn, S’ is 
Bseq and Bx ∉ S’,  
i.e., its Clause Set S gets clauses 
appended to its head in step l>k which 
don’t belong to any Block instantiated in 
steps <=k by one or more of its parents. 
A parent-set of such a CN is called 
supporting. In (Figure 5) an example is 
shown for the CN {b} which is supported 
by clause {c,d} not belonging to block 
Ba. If a head-clause of a CN is also a 
clause of one of the Clause Sets of its 
parents, then this parent is called direct 
parent of the CN. The CN itself is called 
direct child of this parent (Figure 6): 
 
 

 
 
 
 
 
 
 
 
  

Figure 5 

Figure 9 

Figure 10 

Figure 6 
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A CN [q] formed within a Block Bx 
through +ve as well as -ve edge- or 
branch-literals x is called: Double-Sided 
CN from the perspective of x, DSCNx. 
Such a x is called distinguished Literal 
for [q]. A CN [q] formed within a Block 
Bx through only +ve or only -ve edge- or 
branch-literals x is called: Single-Sided 
CN from the perspective of x, SSCNx, x 
is called non-distinguished Literal for 
[q]. Formally: 
 

- CN [q]	∈SR-DAGBS is called DSCNx if 
∃n1,n2:Node∈SR-DAGBS, x,y:Literal, S1 
2CNFn1, S2 2CNFn2 such that: LLRS1=x, 
LLRS2=y, x=¬y, Parent(n1,[q])=TRUE, 
Parent(n2,[q])=TRUE. 
- CN [q]	∈SR-DAGBS is called SSCNx if 
∃n1,n2:Node∈SR-DAGBS, x,y:Literal, S1 
2CNFn1, S2 2CNFn2 such that: 
LLRS1=LLRS2=x, Parent(n1,[q])=TRUE, 
Parent(n2,[q])=TRUE. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If for a CN [q] there is no distinguished 
Literal x such that the CN is DSCNx, then 
[q] is called simply SSCN. If a non-
distinguished Literal x for a CN [q] 
formed in steps <=k is used to augment 
the size of [q] in step l>k, i.e., x is 
instantiated in a clause whose derivation 
is added to the clauses of [q] in l, then x 
is called: CN-Augmenting Literal 
(CNAL) for [q]. 
CNAL={L:Literal∈C:Clause, [q] is 
CN∈SR-DAGBS formed in steps<=k, L is 
non-distinguished for [q] | Size[q] is 
augmented in steps>k through 
invocations: InstSimpleC ({L=TRUE},C) 
or InstSimpleC ({L=FALSE},C) } 
 
Concepts defined here are used mainly in 
(Lemma 9-a), (Lemma 9-b) and (Lemma 
9-c). 
 
 
 
 
 

i 

Figure 7 

Base-Set/Node 

N1: {a,..}{..}.. 
N2: {b,..}{..}.. 

...... ...... 
a b 

Base-Set/Node + {x,y} 

N1: {a,..}{..}.. {x,y} 
N2: {b,..}{..}.. {x,y} 

...... ...... 
a b 

i 

Base-Set/Node+{i!,a} 

N1: {a} 
N2: TRUE 

TRUE 

a 
FALSE 

Base-Set /Node+{i!,a}+{ ,a} 

N1: {a} 

TRUE 

a 
FALSE 
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Definition 5: Dependency Graph, Leaves of 

Dependency Graphs, Free Binary Decision 

Diagrams 
 

A dependency graph (DG) of a 2CNF 
Clause Set S is a directed, acyclic graph 
<V,E> where V is the Set of all NLs, E 
the Set of ordered pairs <v1,v2>, v1,v2∈

)	representing instantiations of NLs 
produced during resolution. DGs can be 
deduced from SR-DAGs in a canonical, 
straightforward way24 and used as 
practical alternatives for truth tables. 
They are equivalent to Free Binary 
Decision Diagrams (FBDDs)25 as shown 
in [Abdelwahab 2016-2] . The following 
two properties define a DG: 
 

1. Each NL can appear only once in a 
branch. 

2. Branches can have different 
Literal/variable orderings ∏p 

depending on the sub-problem p they 
belong to26. 

 
A leaf of a DG is a node whose value is 
TRUE or FALSE. Positive leaves have 
the value TRUE. (Figure 8) shows an 
example of a DG for the exemplary s.o. 
tree in Definition 3 (Figure 3). 

 
 

 
24 By abstracting in each resolution-step for each 
node of the SR-DAG and Clause Set S the least-
literal of the head-clause used in LLRS and 
building out of it a corresponding node in the 
DG. 
25 FBDDs are normally generated by recording - 
on top of resolution-procedures - variable 
assignment decisions encountered while trying to 

Definition 6: Splits, N-Splits, CN-Splits, 

Split Node, Big-Splits 
 

An SR-DAG is said to possess a Split if 
∃S’:2CNF Clause Set such that: For some 
n1,n2:Node∈SR-DAGBS, S1 is 2CNFn1, S2 is 
2CNFn2, n1≠n2: S’⊆ S1, 
S’⊆S2,∄n:Child(n,n1)=Child(n,n2)=TRUE  
(i.e., n1,n2 possess common sub-
formulas, but don’t possess common 
sub-trees). CN-Splits are characterized 
on top of that by the existence of 
different Derivations of the same clause 
in the non-common parts of the Clause 
Sets of both nodes. Formally: Splits are 
called CN-Splits, if, in addition to the 
condition above: ∃q:Node, ∃C:Clause∈
)*: S’ is 2CNF[q] , [q] is CN/MSCN in step 
k and C is resolved in steps >k such that: 
C1⊆S1, C2⊆S2, C1,C2∉S’, C1,C2∈Every 
Derivation of C, C1≠C2.	If a Split is not a 
CN-Split, it is called N-Split. 
 

Splits are thus formed when either node 
n containing Clause Set S constructed in 
step k is duplicated one or more times in 
steps >k together with all or parts of its 
nodes or sub-trees, the cause of this 
duplication being that S is resolved with 
a clause whose least-Literal was new in 
that step and had an index strictly less 
than all or any indices of head-literals in 
S as seen in the introduction (N-Split) Or 
a CN [q] constructed in step k and/or any 
of its nodes or sub-trees are duplicated 

find a solution. The methods described here as 
well as in in [Abdelwahab 2016-2] produce a 
canonically ordered FBDD(=DG) representing 
existent variable alignments in the used clauses. 
26 In contrast to the more common OBDDs in 
which one Literal/variable-ordering is governing 
the whole graph. 

Figure 8 
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with variations27 one or more times in 
steps >k (CN-Split). We focus on CN-
Splits in furtherance, since N-Splits are 
already covered in l.o.u. and l.o. 
conditions imposed by our main 
Algorithms below which both require 
condition c of Definition 1 prohibiting 
the use of new names/indices which are 
< indices of already resolved clauses. 
 
Example of a CN-Split: 
 
The reason why different CN-Splits 
occur is generally that different 
derivations of C get resolved with a CN 
through different branches of the SR-
DAG linked to this CN. New nodes 
[q]'=[q]+C' are formed where C' is a 
possible derivation. [q'] is called: Split-
Node. If rank[q]=rankBN this form of 
Splits is called Big-Split (plural: 
BigSps) This situation is illustrated in 
below (Figure 9) as well as the concrete 
example of (Figure 10). BigSps are 
causes of exponential behavior of 2SAT-
GSPRA when it is applied to a.a. or l.o.u. 
Clause Sets. 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10: A concrete example for the sequential 
resolution of the ordinary 2-SAT case showing a 
new clause {2!,5} traversing in step k a IRT 
produced in steps < k. CN {3!} (left) is seen to 
split (right) to form nodes {{3!}{2!,5}}} and 
{{3!}{5}} respectively. This Split is not a 
BigSps.  

 
27 Different variations of the duplicated CN 
correspond to the resolution of different 

Concepts defined here are used mainly in 
(Lemma 9-a), (Lemma 9-b) and (Lemma 
9-c). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

derivations of a newly resolved clause C with the 
CN. 

X Y Z …….. 

Q 

Base-Node 

C (resolved in step >k) 

C' C'' C''' 

{2!,5} 

{2!,5} 

{5} 

Figure 9 
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Definition 7: Clauses Renaming Algorithm, 

Connection Matrix, Renaming Precedence 

Condition 

 
The Clauses Renaming Algorithm 
(CRA) is a procedure which takes an 
arbitrary Clause Set S as input, renames 
its literals yielding a new, logically 
equivalent S' as output which is 
guaranteed to be l.o.u. This procedure 
consists of the following steps: 
 

CRA: 

Inputs: Arbitrary 2CNF Clause Set S of size M 
Output: Clause Set S’ 
Steps: -  
1. Enumerate clauses in S (starting with 0) in 

ascending order. 
2.  For each clause Ci: 

a) Arrange literals in ascending order 
within Ci such that literals which were 
not renamed before and appear more 
often in other clauses become HLs 
before those which appear less often or 
which only appear in Ci. This condition 
shall hereafter be called: Renaming 
Precedence Condition (RPC). RPC uses 
Connectx,S of Definition 0.4. 

b) Create a matrix whose rows represent 
variable/Literal names/indices while 
columns represent clauses. This matrix 
is called: Connection Matrix. 

3. For all clauses Ci and all literals in Ci:  

- Create a new row and write 
column values TRUE or 
FALSE according to whether 
the Literal appears in the 
corresponding clause or not. 

4. Rename all variables in the Connection 
Matrix in ascending order.  

5. Reconstruct the clauses again using the new 
variable names. This reconstruction may be 
done by simply substituting each Literal in 
the original Clause Set with its new Literal 
name/index. 

Example: If S = {{0,5} {0,2} {1,3} 
{1,4} {2,3}}, then the Connection 
Matrix of S is: 

 

 

 C0 C1 C2 C3 C4 
0 True True False False False 
5 True False False False False 
2 False True False False True 
1 False False True True False 
3 False False True False True 
4 False False False True False 

 

Transformed (via step 4 of CRA) to: 
 

 C0 C1 C2 C3 C4 
0 True True False False False 
1 True False False False False 
2 False True False False True 
3 False False True True False 
4 False False True False True 
5 False False False True False 

 

The new clause list for the above reads 
S: S' = {{0,1}{0,2}{3,4}{3,5}{2,4}}. 
Note that S' is l.o.u. Note also that if we 
would want to convert S' to a l.o. Set by 
sorting clauses via their least-literals (as 
required by Condition b) in Definition 1) 
we would get: S'' = {{0,1} {0,2} {2,4} 
{3,4} {3,5}} which is not fulfilling 
Condition c) because of Literal 3 (i.e., S'' 
is neither l.o. nor even l.o.u.). To convert 
an arbitrary Clause Set to a l.o. Clause 
Set, an extension to CRA is needed, 
introduced hereafter with some 
definitions: 
 

Definition 8: Mapping, Image, Variable 

Space, Node in space-i, Apply, Inverse Apply, 

Equivalence via Mapping, trivial Mapping, 

Stable Set, Stable Clause, Stable Clause Set, 

Mixed Space Node, Single Space Node, Mixed 

Space SR-DAG/Tree, Single Space SR-

DAG/Tree, Literal in space-i, Assignment in 

space-i, Literal x proceeds y in space-i, 

Mapping in space-i, monotone Mapping 

 
Definition 8.1: Mapping: (N) => N is a 
bijective function giving a Literal 
Name/Index in a 2CNF Clause Set S its 
new Name/Index after a renaming 
operation using CRA. The new 
Name/Index is also called: Image of the 
Literal. New Names of literals forming 
single clauses or Clause Sets are called 
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Images of original clauses or Clause 
Sets. Subsequent application of 
mappings starting from a BS is called a 
Variable Space (VS). To express that a 
Clause Set is formed in a space-i the 
notation: S={{..}…{..}}space-i is used. To 
express that a node is formed in a space-
i the notation: Node space-i is used. 
 

Definition 8.2: Apply: (M:Mapping, S: 
2CNF Clause Set) => Clause Set 
Is a function which replaces occurrences 
of literals in a Clause Set S with their 
Names/Indices given by the mapping M. 
InvApply is similarly defined, but 
applies to S: M-1 instead of M. 
 

Definition 8.3: Two 2CNF Clause Sets 
S1, S2 are said to be Equivalent via 
Mapping (Notation: S1 ⇔M S2) if ∃M1, 
M2:Mapping such that: 
Apply(M1,S1)=Apply(M2,S2)=S’. S’ is 
called: Syntactic Image of both S1, S2. 
 
Definition 8.4: If ∃M:Mapping, S 
2CNF Clause Set, ∀xÎLIT(S): 
M(x)=x, i.e., each Literal index is given 
itself after a renaming operation using 
CRA, M is called trivial Mapping 
(tMapping).  
If ∃M:Mapping produced in step k 
such that: ∀xÎSub, Sub⊆Lit(S): 
M(x)=x in any step >k, i.e., a subset of 
Literal indices is mapped to itself via 
CRA in step k and remains always 
mapped to itself for any step>k, Sub is 
called a Stable Set of literals. If 
∀x:LiteralÎCiÎS, xÎSub⊆Lit(S), Sub 
is stable, then: Ci is called Stable 
Clause. If ∀CiÎS, Ci is stable, then: S is 
a Stable Clause Set.  
 

Definition 8.5: If S1, S2 are 2CNF 
Clause Sets of nodes n1,n2ÎSR-DAG, 
respectively, S1≠S2, but n1=n2=n, then: 
n is called Mixed-Space Node (MSN) as 
opposed to Single-Space Nodes (SSN).  
 

Definition 8.6: SR-DAGs with MSN 
nodes are called Mixed-Space Trees 

(MSTs). SR-DAGs with only SSNs are 
called Single-Space Trees (SSTs). A 
Literal index subscribed by space-i 
(Lspace-i) refers to the name L given by a 
mapping M in space-i. An Assignment 
giving literals in space-i truth values is 
called space-i-Assignment (Aspace-i) 
If ∃space-i:VS such that: Sspace-i is a 2CNF 
Clause Set where:  
FIRSTC(x,Sspace-i)<FIRSTC(y, Sspace-i), 
then: x proceeds y in Sspace-i or, if S is 
known from the context, just: x proceeds 
y in space-i (Notation: (x | y) space-i) 
i.e., within space-i the first occurrence of 
Literal x in Clause Set S comes before the 
first occurrence of Literal y. When space-i 
is known, its subscript is omitted. 
Mappings subscribed by space-i: 
(Mspace-i) refer to the mapping created by 
a CRA operation within space-i.  
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Example: 
For S = {{0,5}{0,2}{1,3}{1,4}{2,3}} 
and S' = Apply (M,S) = 
{{0,1}{0,2}{3,4}{3,5}{2,4}} in the 
example of Definition 7, Mapping M is: 
{{0,0}{5,1}{2,2}{1,3}{3,4}{4,5}}, 
Stable-Set = {0,2} 
 

Definition 8.7: A mapping Mspace-i is 
called monotone Mapping in space-i 
(mMspace-i), when ∀x,y∈LIT(Sspace-i): 
if (x | y) space-i then also Mspace-i 
(x)<Mspace-i (y) 
 

Definition 9: Clauses Renaming & 

Ordering Algorithm, CRA-Form 
 

The Clauses Renaming & Ordering 
Algorithm (CRA+) is a procedure which 
takes an arbitrary 2CNF Clause Set S in 
a space-i as input and applies CRA 
repetitively generating a new mapping 
and a new space each time. After each 
step the intermediate Clause Set is sorted 
as required by Definition 1b) before 
iterating back. This is done until 
renaming Literal indices in two 
consecutive steps yields tMapping, i.e, 
the Stable Set becomes equivalent with 
the Set LIT(S), while the output Clause 
Set S' becomes l.o.  
The following recursive pseudo-formal 
description of this procedure is used in 
the below proofs: 
 

CRA+: 

Inputs: An arbitrary 2CNF Clause Set S 
Output: l.o. Clause Set S’ 
Steps: 

1- set CurrentMapping = null, CurrentSet=S 
2- while (CurrentMapping != tMapping) 

 
i. currentSet=CRA(CurrentSet) 

ii. sort CurrentSet as instructed in 
Definition 1 b) 

iii. set CurrentMapping=Mapping 
passed by CRA 

3- S’=CurrentSet 
4- return S’, S’ is called the CRA-Form of S. 

Example: Following this procedure for 
the above Set S = {{0,5}{0,2}{1,3} 
{1,4}{2,3}} applying CRA to get S' = 
{{0,1}{0,2}{3,4}{3,5}{2,4}} and a 

sorting step giving the above S''={{0,1} 
{0,2}{2,4}{3,4}{3,5}}. 
A new CRA-iteration will yield the 
following Connection Matrix: 
 
 

 C0 C1 C2 C3 C4 
0 True True False False False 
1 True False False False False 
2 False True True False False 
4 False False True True False 
3 False False False True True 
5 False False False False True 

 

It is then transformed to: 
 

 C0 C1 C2 C3 C4 
0 True True False False False 
1 True False False False False 
2 False True True False False 
3 False False True True False 
4 False False False True True 
5 False False False False True 

 

Mapping: 
{{0,0}{1,1}{2,2}{4,3}{3,4}{5,5}}, 
Stable Set: {0,1,2,5} yields 
S'''={{0,1}{0,2}{2,3}{3,4){4,5}} when 
applied on S''. S''' is l.o. already and 
needs no further sorting. Note that in the 
last matrix all literals are forming an 
ordered sequence which means that any 
further renaming would result in 
tMapping. This is the termination 
condition. 
 

Definition 10: Sequentially-Ordered, 

Multi-Space SR-DAG, Multiple Space Block, 

Multi-spaced Symmetric Block, Target Space, 

Multiple Space Common-node 

 

An MST whose Clause Sets are all l.o. is 
called: Sequentially-Ordered, Multi-
Space Resolution Tree/SR-DAG 
(MSRTs.o.), if ∀nspace-i:NodeÎSR-DAG:- 
(2CNFn)space-i is l.o. A block Bx whose 
Clause Set or derivations thereof (all or 
part of them) belong to more than one VS 
is called a Multiple Space Block, MSB 
(Notation also: BxS1,S2,..,S1,S2,.. Variable 
Spaces). Similar to Single Space Blocks: 
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An MSB may be symmetric or 
dissymmetric.  
 

Formally: MSB = {  
(Bx1)space-i:2CNF Clause Set | 
∃space-j, (Bx2)space-j:2CNF Clause Set, 
M: Mapping, where:  
((Bx1)space-i ⇔M (Bx2)space-j ) Or ((B’x1)space-i 
⇔M (B’x2)space-j)), B’x1, B’x2 are Derivations 
of Bx1, Bx2, in respective Spaces}	
	
Definition 10.1: An MSB Bx is called 
Multi-spaced Symmetric Block (MSSB)  
- MSSB = {  
(Bx1)space-i:2CNF Clause Set | 
∃space-j, (Bx2)space-j:2CNF Clause Set, 
M: Mapping, where 
((Bx1)space-i ⇔M (Bx2)space-j 
Or  
(B’x1)space-i ⇔M (B’x2)space-j) 
B’x1, B’x2 are Derivations of Bx1, Bx2, in 
respective Spaces and ∃Aspace-i, Aspace-j: 
Assignment such that:  
instSimple(Aspace-i:{X1=TRUE}, 
(Bx1)space-i) ⇔M  
instSimple(Aspace-j:{X2=FALSE}, 
(Bx2)space-j) 
}  
 
Definition 10.2: A node in a space ST 
(called: Target Space, TS) which is 
target of two or more Variable Spaces is 
called Multiple Space Common Node, 
MSCN (Notation: [q]STS1,S2,..,S1,S2,..,ST 
Variable Spaces to which the node 
belongs). Formally: A node is called 
MSCN if ∃n1,n2	∈ MSRTs.o not 
necessarily of the same space: [q] 
adjacent to both n1 and n2, i.e., in step 
k of the resolution it becomes common 
child/adjacent to two or more nodes, 
possibly of different spaces [x]S1, [y]S2, 
[z]S3, … in (Figure 11)28 generated in 
steps <k. This happens when there exist 
mappings M1,M2,M3…, such that: 
x=M1(x’),y=M2(y’),z=M3(z’),…, where 
x, y, z are literals in ST, and x’, y’, z’ are 
literals replaced by TRUE or FALSE in 

 
28 The notation [x]S1 is read: Node [x] in Variable 
Space S1. 

their respective Clause Sets and 
respective Spaces.  
The common-node [q]STS1,S2,.. contains 
the first appearance of its name Literal 
(NL) q in all branches of the MSRTs.o 
containing [x’]S1, [y’]S2, [z’]S3, … etc. 
and there exist literals q’, q’’, q’’’, etc. in 
Spaces S1,S2,S3,… such that: 
q=M1(q’)=M2(q’’)=M3(q’’’)=… etc. 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Illustration of Definition 10 where 
ST=Space1,M0 is the trivial Mapping, 
[b]STSpace1={{b,d}{e,f}} is a 
MSCN,[c]Space1={{¬c}{b,d}{e,f}}, 
[a]Space2={{¬a}{b,c}{d,e}} for M={(c>a), 
(b>b),(d>c){e>d}{f>e}}. Then it is clear that 
[c]Space1=[a]Space2=[q]Space1,Space2,where 
q=M0(c)=M(c). Also: [b]STSpace2 is obviously 
child to both, [a]ST=BS and [a]Space2 with edge-
literals a=M0(a) and a=M(c) respectively.  

S2 S3 S1 

ST 

X=M1(X’) 

Y=M2(y’) …… 

X’ Y’ Z’ …….. 

Q 
Figure 11: Multiple Space 
                       Common-Node 
           (MSCN) 
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Definition 11: Double-Sided MSCN with 
respect to Literal z, Single-Sided MSCN 
with respect to Literal z, trivial MSCN 
 

An MSCN [q]space-i is called DS-MSCNz 
(Double-Sided MSCN with respect to 
Literal z) if ∃n1,n2	∈ MSRTs.o of 2CNF 
Clause Set S, ∃xspace-j	, yspace-k:Literal, 
∃M1,M2: Mapping, such that: [q]space-i is 
adjacent to both n1 and n2 and  
zspace-i =M1(xspace-j), zspace-i =M2(yspace-k), 
where yspace-k has the opposite sign of 
xspace-j, i.e., there exist at least two edge- 
or branch-literals x, y from Spaces space-
j, space-k respectively and a Literal z 
from the target space-i such that both 
literals are translated to z within their 
respective spaces and have opposite 
signs. Literals x and y are also called 
distinguished (c.f. Definition 4, 
(Distinguished Literal)). 
if ∃n1,n2	∈ MSRTs.o of 2CNF Clause Set 
S, ∃xspace-j	, yspace-k, ∃M1,M2:Mapping, 
such that: [q]space-i is adjacent to both n1 
and n2 and zspace-i =M1(xspace-j), zspace-i 
=M2(yspace-k), where yspace-k has the same 
sign as xspace-j, i.e., a MSCN is formed 
through only +ve or only -ve 
instantiations of edge- or branch-literals 
z or its images in respective spaces, z is 
not distinguished, then the MSCN is 
called SS-MSCNz (Single-Sided MSCN 
with respect to z). [b]STSpace2 in the 
example above of (Figure 12) is thus a 
SS-MSCNa.  
 

An MSCN [q] is called trivial MSCN, 
(tMSCN), if ∃n	∈	MSRTs.o whose 
Clause Set is a MSSB, Child([q],n)=TRUE, 
i.e., [q] is formed through a newly 
resolved clause in step k, who belongs to 
a MSSB to which one or more of its 
parents belonged in steps <k.  
 

Concepts defined here are used mainly in 
(Lemma 8), (Lemma 9-a), (Lemma 9-b ) 
and (Lemma 9-c) 

Definition 12: Aligned Trees, 
Alignment Clause 
 

A MSRTs.o of a 2CNF Clause Set S is 
said to be aligned if ∃C S, C’ derivation 
of C such that:∀n MSRTs.o., S’ is 
2CNFn, ∀Cx  S’ the following is true: 

a) SortOrder(C’, S’)>SortOrder(Cx,S’) 
b) S’ is l.o. 

In other words: Either C or one of its 
derivations C’ are the last clauses in any 
Clause Set of the MSRTs.o. C is called 
Alignment-Clause.  
 

Definition 13: Aligned Nodes, 
Alignment Clause Set of S, Alignment 
MSRTs.os 
 

A node n of size M is said to be aligned 
if: 

a) For M<=2: n possesses a Clause 
Set with an aligned MSRTs.o 

b) For M>2: 
(i) All nodes or sub-trees of size 

M possesses Clause Sets 
which are l.o. 

(ii) All nodes or sub-trees of size 
<M are aligned 

The Set of all unique clauses and their 
derivations used for the alignment of all 
nodes of a MSRTs.o of an arbitrary 2CNF 
Clause Set S is called Alignment Clause 
Set of S (ACS). It is formally given by: 
ACS=∪	 permCiÎS for all CiÎS. 

Obviously, ACS cannot have more than 
RCC2-SAT*M elements/clauses 
containing all possible permutations of 
literals in linear- or non-linear sequence. 
An MSRTs.o whose nodes are all aligned 
is called Alignment MSRTs.o 
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Definition 14: Resolution procedures: 
2SAT-GSPRA+, Align 
 

2SAT-GSPRA+: 

Inputs: Arbitrary 2CNF Clause Set S of size M 
Output: MSRTs.o 
Steps: -  
1- convert arbitrary clauses in S to a.a. ones 

(only sorting literals inside each clause).  
2- choose a clause C0 Î S 
3- convert S to a l.o. Set using CRA+ ( the 

version with DB-Sorting, c.f. Section III, 
Lemma 8) 

4- convert C0 to a SR-DAG using Convert(C0)  
5- set IRT (Intermediate Resolution Tree) = 

SR-DAG produced in 4 
6- ∀ Ci Î S (one by one) 

a. IRT=Align(IRT , Ci) 
7- return IRT 
 

Align (SR-DAG, C): 

Inputs: An MSRTs.o with base-node n and S the 
Clause Set of n, an a.a. 2CNF clause C 
Outputs: MSRTs.o 

Data Structure: List of Tuples: <Clause Set, 
Node index> (called: LCS) initially empty 
Steps: - 
- If (MSRTs.o =FALSE-DAG)  

Return FALSE-DAG 
else 
  If (MSRTs.o =TRUE-DAG) 
 { 

- Result = Convert(C) 
- Store S=C in LCS in its CRA-Form, 
   index is the base node of Result 

 Return Result 
 } 

else 
{ <bracket-1> 
a- Update S in node n with C: S=S ∪ C 
b- If (S is in LCS)  

Return 
SubTree(foundNodeIndex) 

c- If (S is l.o.) 

{<bracket-2> 
- X=least Literal in S 
- leftC=instSimpleC({X=TRUE},C) 
- rightC= instSimpleC({X=FALSE},C) 
- if (leftC=empty)  

(i..e. C evaluated to TRUE via 
InstSimple)  
leftResult=LeftDAG(n) 

   else 
  If (leftC=Nil) 

(i..e. C evaluated to FALSE 
via InstSimple)  

 
 
 
leftResult=FALSE-DAG 
else  
{<bracket-3> 
leftResult= 
Align(LeftDAG(n), leftC) 

}<bracket-3> 
- if (rightC=empty)  

rightResult=RightDAG(n) 
   else 
  If (rightC=Nil) 

rightResult=FALSE-DAG 
else  
{<bracket-3> 
rightResult= 
Align(RightDAG(n), rightC) 

}<bracket-3> 
- Result= MSRTs.o formed from node n, left- and 
rightResult 
- Store S in LCS in its CRA-Form giving it as 
index the node n 

- Return Result 

}<bracket-2> 
else (of step c-) 
If (S is not l.o.) 

{<bracket-2> 
1- Choose a clause C0 Î S, 
S’=CRA+(S), the version with DB 
Sorting  
2- If S’ has already been stored in LCS, 
erase its entry 
3- C may have changed its place due to 
sorting in CRA+. MSRTs.o for all clauses 
except the last one must be created 
again: Let S’’=S’\A, A is the last clause 
in S’ 
4- NewDAG=2SAT-GSPRA+(S’’), 
Construct all nodes whose Clause Sets 
start with S’’ again, assigning to them 
NewDAG and updating LCS with 
adequate information. 
5- Result=Align(NewDAG,A) 

6- Store S’ in LCS in its CRA-Form 
giving it as index the base node of 
Result 
7- Return Result 
}<bracket-2> 

}<bracket-1> 
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Definition 15: 2SAT Fast Generic 
Pattern Resolution Algorithm  

 

2SAT-FGPRA: 

Inputs: Arbitrary 2CNF Clause Set S of size M 
Output: MSRTs.o 

Data Structure: List of Tuples: <Clause Set, 
Node index> (called: LCS) initially empty 
Steps: -  
1- convert arbitrary clauses in S to a.a. ones 

(only sorting literals inside each clause).  
2- choose a clause C0 Î S 
3- convert S to a l.o. Set using CRA+  (the 

version with DB-Sorting, c.f. Section III, 
Lemma 8) 

4- Create base node n, Set S to be the Clause 
Set of n,  

5- Process n as follows: 
- if (size of n > 1) && (clauses are neither 

evaluated all to TRUE nor containing a 
clause evaluated to FALSE)) 

 {<bracket-1> 

(Form left- and right Clause Sets for n 
instantiating the least Literal to TRUE 
and FALSE respectively. Make sure the 
resulting Clause Sets are l.o.) 

a. X=Least Literal of S 
b. leftClauseSet= 

InstSimple({X=TRUE},S) 
c. rightClauseSet= 

InstSimple({X=FALSE},S) 
d. leftClauseSet= 

CRA+(leftClauseSet) 
e. rightClauseSet= 

CRA+(rightClauseSet) 

f. Search for leftClauseSet in LCS 

 if (leftClauseSet found) 

leftResult= 
SubTree(foundIndex) 

 else 

{ 

1-leftResult=2SAT-
FGPRA(leftClauseSet) 

2- Store leftClauseSet in LCS 

in its CRA-Form giving it as 

index the base node of 

leftResult 

} 

 
g. Search for rightClauseSet in LCS 
 

 if (rightClauseSet found) 

rightResult= 
SubTree(foundIndex) 

 else 

if (S has only one clause C) 

{ 

1-rightResult=2SAT-
FGPRA(rightClauseSet) 

2-Store rightClauseSet in LCS 
in its CRA-Form giving it as 
index the base node of 
rightResult 

} 

- Result= MSRTs.o formed from node n, 
left- and rightResult 
- Store S in LCS in its CRA-Form 
giving it as index the node n 

- Return Result 
} <bracket-1> 

else 

if (S has only one clause C) 

{ 

- Result = Convert(C) 

- Store S in LCS in its CRA-Form 
giving it as index the node n 

Return Result  

} 

Else {  

If (clauses are evaluated all to TRUE) 

 Return TRUE-DAG 

Else (clauses contain a clause evaluated 
 to FALSE) 

 Return FALSE-DAG 

}  
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III-2 Converting arbitrary 2CNF Sets 
         to l.o.u and l.o. ones 
Can we always convert arbitrary Sets to 
s.o. or lo.o. ones? To answer this 
question we need to investigate how to 
convert a.a. Clause Sets29 to l.o.u. and 
l.o. ones. 
 

Lemma 1: CRA is guaranteed to convert 
an a.a. Clause Set S into a l.o.u. Clause 
Set. It takes O(N*M) steps30 to do so for 
M = number of clauses, N = number of 
variables. Moreover:  
a. CRA always produces monotone 

mappings (mM). 
b. (x | y) iff (x<y) for literals x,y∈ Lit(S) in 

any l.o. Clause Set S. 
c. In sequential, clause by clause resolution:  

Let x,y∈ Lit(S), S is l.o., S=2CNFBN, 
x∈C1,y∈C2,C1≠C2, FIRSTC(x)=1, 
FIRSTC(y)=2, 
SortOrder(C1,S)< 
SortOrder(C2,S) 
and  
∃n:Node,space-i:VS where: S’=2CNFn, 
Child(n,BN)=TRUE such that: 
xspace-i,yspace-i∈Lit(S’), S’ is l.o., 
xspace-i∈C1

’,yspace-i∈C2’, C1
’≠C2’, 

FIRSTC(xspace-i)=1, 
FIRSTC(yspace-i)=2, 
SortOrder(C1’,S’)< 
SortOrder(C2’,S’) 
and 
C1’, C2’∈S’ images or derivation of images 
of C1, C2∈S then: 

(xspace-i | yspace-i) iff (x | y)31 
 

Proof: c.f. the three conditions of 
(Definition 1) for a Clause Set to be 
l.o.u.: 

a) ∀ai,bij∈Ci+j: ai<bij 
c) ∀x ∈ LIT(S), ∀C ∈ S: 

if x not ∈ LEFT(x,C) then 
∀y ∈ LEFT(x,C): x>y 
 

 
29 Converting an arbitrary Clause Set to an 
almost arbitrary one (a.a.) being a trivial exercise 
needing only sorting literals inside each clause in 
ascending order and taking care that clauses have 
unique occurrences. 
30 Steps are invocations of primitive operations 
as normally perceived in complexity analysis. 

d) Clauses appear only once in S 
It is clear that a) and d) are fulfilled by any 
output of CRA as they constitute the mere 
definition of a.a. Sets. For Condition c): 
Suppose some Literal L in a clause Ci={... 
L ...} ∈ S' (S' = output Set) breached 
Condition c): This means that L is new in 
the clause sequence starting with C0 until 
Ci, but there exists L' to its left where L<L'. 
This cannot be the case, since any such L' 
would have to appear in a row before L in 
the connection matrix (step 2-b, Definition 
7) and thus get a smaller index in the 
renaming step 3-. For the complexity 
assertion: The number of cells to be created 
in a Connection Matrix is always N*M.  
To show the mM property a-: ∀x,y literals 
in a Clause Set: CRA’s way of giving them 
new names is - as seen - to assign each one 
a row in the connection matrix in the order 
of their appearance and then rename the 
rows by counting from 0-n, finishing up 
with a strict order (c.f. Definition 7, steps 
2-a, 3 and 4 as well as the example). 
Therefore: If (x | y), then, unless clauses are 
re-ordered, after one application of CRA: 
M(x)<M(y).  
 

For b-: (x | y) iff (x<y) in any l.o. Clause 
Set. To see this, the only direction we still 
need to show is: (x<y)>( x | y). Suppose in 
a l.o. Set: (x<y). Either ( x | y) or ( y | x). In 
case (y | x), this means that the first 
occurrence of y comes before the first 
occurrence of x and both appear in different 
clauses. But then, x should have been > y 
as per condition c in Definition 1 which 
prescribes that in a l.o. Clause Set a new 
Literal must be strictly greater than all 
literals occurring to its left. 
This means ( x | y). 

31 Intuitively: If two literals x, y belonging to 
different, subsequent clauses of S, a l.o. Base Set, 
have images in another l.o. Set S’ of some Space-
i, and the order of clauses in S’ preserves the 
relative precedence of images of Literal x on 
images of Literal y, this always means that xspace-i 

proceeds yspace-i in S’. The other direction is also 
true. 



Abdelwahab, N. 
 

 

 

41 

41 

For c-: First direction: Suppose xspace-i 
appears in C1’ for the first time in step 
k. X must also appear for the first time 
within C1 in S in step k, because C1’ is 
the image or a derivation of an image 
of C1 and FIRSTC(x)=1. yspace-i appears 
then in S’ in a step j>k, because 
C1’≠C2’,SortOrder(C1’,S’)<SortOrder
(C2’,S’), S’ is l.o. and resolution is 
sequential. Suppose now (y | x) in S. 
This means that C2 must have 
appeared in a step <k contradicting the 
fact that C2’, its image, appeared in 
j>k. Therefore it must be that: (x | y). 
The other direction is similar: When (x 
| y), then (yspace-i | xspace-i) cannot be the 
case unless either the order of S is not 
preserved in S’ or yspace-i appears for 
the first time in a clause other than C2’. 
Both conditions contradict the 
assumptions. 
(Q.E.D.) 
 

Lemma 2: For a 2CNF Clause Set S it is 
true that: 
a- S is l.o. iff CRA+(S) reaches a Stable-
Set of literals equivalent to LIT(S) 
b- S is satisfiable iff CRA+(S), the CRA-
Form, is satisfiable 
c- S and CRA+(S) are logically 
equivalent 
 

Proof: a- Suppose S is l.o. This means 
that it is fulfilling all Conditions a)-d) of 
Definition 1. Any attempt to use CRA+, 
i.e., rename the literals and then sort 
them, must generate a Stable-Set = 
LIT(S) after only one CRA- and sorting 
iteration, since otherwise (i.e., if a Literal 
gets a new Name/Index after such an 
iteration) this would mean a breach of 
one or all of those conditions. Other 
direction: Suppose S reached such a 
Stable-Set through application of CRA+, 
i.e., CRA+ terminated. If S is not l.o., 
then it must be at least l.o.u. (because of 

 
32 The other direction: [CRA+(S) is satisfiable 
=>S is satisfiable] can be shown using similar 

Lemma 1). The only reason for S not to 
be l.o. would thus be that clauses are not 
sorted correctly. This is not possible 
because CRA+ can only become a Stable-
Set equivalent to LIT(S) if two 
consecutive renaming iterations assign 
literals with the same names/indices, the 
first of which is followed per definition 
by a sorting operation. 
b- The proof is by induction on M, the 
number of clauses in S. 
 

Base-Case: M=1: For S={{a,b}} CRA+ 
terminates after one iteration yielding the 
Clause Set S’={{a’,b’}} with a’,b’ new 
Indices/Names for a,b, a’=M(a), 
b’=M(b), M the mapping produced by 
CRA+. Let A be an Assignment 
satisfying S, A={{a=v1}{b=v2}}, 
v1,v2∈{TRUE,	 FALSE}.	 If	 we	 set	

A’={{a’=v1}{b’=v2}}, then S’ is 
satisfied by A’, since nothing has 
changed except variable names. The 
other direction is similar. 
 

Induction Hypothesis: S is satisfiable 
iff CRA+(S) is satisfiable for SizeS=M 
 

Induction step: If SizeS=M+1: Suppose 
A is the Assignment which satisfies S32. 
We distinguish two cases: 
 

Case 1- S’=CRA+(S), CRA+ does not 
alter the order of clauses in S. Assume 
S={C0,..,CM}, S’={C0’,..,CM’}, where 
CM={a,b}, CM’={M(a),M(b)}. A must 
also satisfy S’’=S\CM which is of size M 
and per induction hypothesis there exists 
A’ satisfying S’’’=S’\CM’. The following 
cases can then occur: 
a- Literals a,b ∈ CM are new, i.e., a,b ∉	
Lit(S’’). M(a) and M(b) are also ∉	
Lit(S’’’) per monotone mapping 
property of M. Extend A’ to include 
{M(a)=v1,M(b)=v2}, where 
v1,v2∈{TRUE,	FALSE} are values given to 
a, b in assignment A. This extended A’ 

arguments and is not included here to avoid 
unnecessary length. 
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satisfies CM’ and thus also S’33, 
otherwise A couldn’t be satisfying CM 
(remembering that names of variables 
are different in CM and CM’, but signs are 
the same). 
b- Either Literal a or b or both are ∈ 
Lit(S’’). It must be then the case that 
v1,v2∈{TRUE,	 FALSE} used in 
assignment A for any such a or b to 
satisfy S’’ do not falsify CM, otherwise A 
wouldn’t be satisfying S. Per induction 
hypothesis: A’ satisfies S’’’ using, per 
definition, for any of M(a) or M(b) the 
same values v1 and/or v2. They can only 
falsify CM’ if they falsify CM which is not 
the case. 

 

Case 2- S’=CRA+(S) alters the order of 
clauses in S. Let S’={C0’,..,CM’}. Re-
arrange S such that clauses are ordered 
like in S’. Call the new Clause Set S’’, 
i.e., S’’={C0,..,CM}. S is, per definition, 
satisfiable iff S’’ is satisfiable. Apply the 
same arguments used in Case 1 on S’ and 
S’’. 
c- S has a CRA-Form S’=CRA+(S) and 
thus S ⇔M S’, (Definition 8.3), i.e., 
∃M:Mapping such that: Apply(M,S)=S’, 
S’ is the exact syntactic image of S. This 
means: Any Truth Assignment A 
satisfying S can be converted to a Truth 
Assignment A’ satisfying S’ by simply 
substituting variables x with M(x). The 
other direction is also possible. 
(Q.E.D.) 
 

Lemma 3: CRA+ takes a number of 
steps which is in O(M2(logM+N)). More 
precisely M CRA-iterations and M 
sorting operations34 (M = number of 
clauses in S, an a.a Set). 
 

Proof: (by induction on M) 
 

 
33 Since the truth value of S’’’ is not affected by 
the new variables 
34 Assuming that a sorting operation takes 
O(M log M) primitive operations. 

Base-Case: M=1: For S={a,b} CRA+ 
takes one CRA and one sorting operation 
to generate tMapping per definition 
(Definition 8.4). 
 

Illustration Case: M=235 
Let S={{a,b},{d,e}}={C0,C1} 
 

Case 1: No literals in common between 
C0 and C1: In that case a<b<d<e. 
S is l.o. No CRA- or sorting iterations 
needed.  
Case 2: Only head-Literal in common: 
S={{a,b}{a,e}} for example: Same as 
Case 1, S is also l.o. No CRA or sorting 
needed. 
Case 3: Only tail-Literal in common 
(Case I): S={{a,b}{b,e}} for example: 
S’ is converted after one CRA-iteration 
to S={{a,b}{a,c}}, because of 
Definition 7, 2a, Renaming Precedence 
Condition (RPC). Thus, no sorting 
needed. 
Case 4: Only tail-Literal in common 
(Case II): S={{a,b}{c,b}} for example: 
S’ is converted after one CRA-iteration 
to S={{a,b}{a,c}}, because of 
Definition 7, 2a), Renaming Precedence 
Condition (RPC), no sorting needed. 
 

Resuming Base-Cases M=1,2: 
Although we may not need CRA or 
sorting, CRA+ takes at most one iteration 
(i.e., one CRA- and one sorting 
operation) to generate tMapping and to 
terminate. 
 

Induction Hypothesis: For M clauses: 
M CRA-iterations (M2*N) as well as M 
sorting operations (M2logM) are needed 
in the worst case to make S l.o. 
 

Induction step: For any additional 
clause CM+1 = {x,y} we have the 
following cases (c.f. Definition 9, 
pseudo formal procedure): 

35 Monotone +ve 2-SAT case is used here and in 
the next Lemma (w.l.o.g.), since CRA+’s 
behavior does not depend neither on Literal signs 
nor on clause breadth. 
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1. x,y are new literals not appearing 
before in any Clause Ci: This case is 
straightforward in that no sorting is 
needed, i.e., only CRA (renaming) in 
the worst case. 

2. One or more literals of x,y appeared 
in a previous clause: For Example: 
Suppose S={{0,1} {0,2} {0,4} {0,6} 
{2,8} {9,10} {11,12}} which is l.o. 
adding the clause {4,6}, the following 
steps are required: 

a) S={{0,1}{0,2}{0,4}{0,6} 
{2,8}{9,10}{11,12}{4,6}} 
input 

b) S={{0,1}{0,2}{0,4}{0,6} 
{2,8}{4,6}{9,10}{11,12}} 
sort  

c) S={{0,1}{0,2}{0,3}{0,4} 
{2,5}{3,4}{6,7}{8,9}}  
CRA, S in step c) is already l.o. 

 

For a Clause Set of size M: S={{a,b} 
{b,…} {d,…}…} where, as per 
induction hypothesis, it is assumed that it 
is l.o. and we add a clause containing one 
or more literals which appeared before, 
we note that S is l.o.u. A sorting step is 
what is required to align the new clause 
to its right place. If this step is done, then 
another CRA-step guarantees l.o.u (per 
Lemma 1). This means that we need an 
additional CRA (renaming) as well as a 
sorting step for this case. 
 

Resuming the induction step: One 
additional CRA- and one additional 
sorting step is needed in the worst case 
for M+1 
(Q.E.D.) 
 

This section concludes with a Lemma 
showing that any a.a. Set can be 
converted to a l.o. Set, i.e., application 
of CRA+ on any a.a. Set always 
terminates yielding the right result. 
 

 
36 CRA renders S ∪ C l.o.u., i.e., any new literal 
v of C is > LEFT(v, C) after such an iteration. 

Lemma 4: CRA+ terminates always 
converting any arbitrary 2CNF Clause 
Set S of size M to a Stable-Clause Set. 
 

Proof: (by induction on M) 
 

Base-Case M=1: For S={{a,b}} as seen 
in the Base-Case of (Lemma 3) CRA+ 
terminates after one iteration yielding the 
Clause Set S’={{a’,b’}} where a’,b’ are 
new indices/names for a,b. S’ is stable. 
 

Illustration Case M=2: Let 
S={{a,b}{x,y}}. As seen in all Base-
Cases for M=2 of (Lemma 3): One 
iteration of CRA and one sorting 
operation converts S to a l.o. Set. This 
means any further iteration of CRA+ 
yields a Stable-Set (per definition of 
CRA+) letting the algorithm terminate. 
 

Induction Hypothesis: Application of 
CRA+ for a number of iterations k on a 
2CNF Clause Set S of size M converts S 
to a Stable-Clause Set (i.e., CRA+ 
produces M stable clauses after k 
iterations). 
 

Induction Step: Per induction 
hypothesis for S having M+1 clauses, 
there are M stable clauses in iteration k. 
Let C={x,y} be the clause which is not 
stable. After step k the position of C 
cannot be before any other stable clause 
C’={i,j}, e.g., as in {{a,b}…{x,y} 
{i,j}…}, because this would mean that 
CRA-operations will have to change 
indices i,j to new ones for C’ 
contradicting its stability assumption, 
i.e., C has to be the last clause in S. 
In that case, even if literals in C would 
not fulfill the l.o. condition for whatever 
reason other than sorting (because C is 
already in its place), further CRA-steps 
in iterations >=k guarantee to convert C 
into a stable clause (per definition of 
CRA+)36 causing CRA+ to terminate 
with a Stable-Clause Set of size M+1. 
(Q.E.D.) 
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III-3 Way of work of 2SAT-GSPRA+ 
The main difference between 2SAT-
GSPRA and 2SAT-GSPRA+ is that the 
latter uses CRA+ to convert Clause Sets 
to l.o. ones. It is necessary to understand 
what 2SAT-GSPRA+ really does when it 
imposes the l.o. condition on clauses. 
Central in this respect are the following 
points: 
 

i- Counting the number of new 
nodes created in each step is essential. 
As resolution is sequential, a new 
clause resolved in such a step has to 
traverse all nodes of the previous IRT 
if necessary (c.f. Figure 10 for an 
illustration). It is therefore clear that, 
unless nodes are left untouched or are 
copied (i.e., Splits occur), the 
contribution of the new clause is either 
to augment sizes of already existing 
nodes or to add new size-1 ones.  

ii- It is also imperative to 
understand how 2SAT-GSPRA+ 
recognizes equivalent Clause Sets so 
that it is not obliged to repeat similar 
calculations. The equivalence notion 
adopted in [Abdelwahab 2016-2] is 
structural (algorithmic), i.e., two 
Clause Sets are equivalent only when 
their generated resolution trees are37. 
As we are always trying to minimize 
nodes in generated trees, this notion is 
sufficient for our purpose. 2SAT-
GSPRA+ implements it (compare with 
Definition 14, Align function, Point b,) 
by requiring a Clause Set to be stored 
in the LCS list only when CRA+ is 
applied to it. This has the advantage of 
normalizing all stored Clause Sets so 
that their sub-trees can be retrieved 

 
37S1={{a,	¬b}{b,d}{¬d,e}}, 
S2={{¬d,e}{b,d}{a,	¬b}} are for example 
considered to be different from the structural 
point of view although they are logically the 
same. 
38 In this present work RPC is restrained to HLs 
only while in [Abdelwahab 2016-2] it is applied 

easily when encountered again during 
resolution, remembering that all 
resolution steps may require using 
CRA+. [Abdelwahab 2016-2] calls this: 
(CRA-form).  

iii- Sorting condition b) in 
(Definition 1) prescribes distinguishing 
+ve and –ve literals of the same 
variable while ordering a Clause Set 
without giving any preference to the 
best way of doing that, leaving it to 
implementations of CRA+. Some 
implementations may have the effect of 
building SBs and tCNs as seen in 
(Definition 4) and (Figure 7) which 
may split. It is shown here that this 
situation can always be avoided 
without disturbing the essential (RPC) 
condition of CRA by appropriately 
choosing which sign to prioritize while 
applying the (DB Sorting) Condition38.  

 

The following lemmas allow us to get a 
more precise picture of the above ideas. 
 

Lemma 5 (Expansion of MSRTs.os): 
a- ∀n1,n2 nodes  ∈	MSRTs.o: if n1,n2 are 
not directly connected in steps <=k then 
they cannot be directly connected in 
steps >k, if the sort order of their Clause 
Sets is not altered, except in the trivial 
case when the new clause belongs to a 
block, parents of n1,n2 were instantiating 
in steps <=k and n1, n2 become 
equivalent (tCN, tMSCN).  
 

b- ∀M>1: A node [q] of size M is 
CN/MSCN iff ∃CN/MSCN [q’] of size 
M-1 augmented in size by a clause C 
such that: [q]=[q’] 
c- Let up1,upj be upper bounds of nodes 
generated during the whole process of 

to all literals. There, a stronger property than the 
one seen in Lemma 8 is shown, namely: That 
appropriately sorting blocks to avoid tCNs (there 
called the l.o.s condition) produces the same 
amount of unique nodes as not doing any extra 
sorting. This was necessary there to imply that 
tCNs and their Splits don’t harm the near-to-
minimal node counts of GSPRA+ trees. 
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resolution in size-levels 1 and j, 
respectively, where 1<j<=M. If Splits are 
not accounted for in any size-level j, 
then: upj<=up1 
 

Proof: 
a- When 2SAT-GSPRA+ is applied on a 
BS, it uses (LLRBS) in the Align 
Algorithm. This rule is applicable within 
a space as well as between spaces in the 
following way: If nodes n1 and n2 belong 
to different spaces and were not directly 
connected in step k, then, unless the sort 
order of their Clause Sets is not altered, 
they cannot be directly connected in 
steps >k, because newly resolved clauses 
don’t affect old results of an application 
of the least-Literal-rule, i.e., least literals 
in old nodes remain the same for l.o. 
Clause Sets (c.f. Definition 4 and Figure 
7 for an illustration). tCN and tMSCN 
exception cases are explicitly dealt with 
in (Lemma 8) below.  
 

b- ∀M>1: If ∃CN/MSCN [q’] of size M-
1 constructed in steps<k and augmented 
in size by a clause C in step k such that: 
[q]=[q’], then per (Definition 4), [q] is a 
CN/MSCN and its size is M. Other 
direction: We need only to investigate the 
case when a node [q] of size M was not a 
CN/MSCN in steps <k and became 
CN/MSCN in step >=k. As per a- this 
cannot happen unless the sort order of one 
of at least two nodes involved is altered. 
Let [q’] be the node of size M whose sort 
order is changed in step k and whose SR-
DAG is completed in steps>k such that 
2CNF[q]=2CNF[q’]. This can only happen 
in 2SAT-GSPRA+ if [q’], when passed to 
the Align-Algorithm is not found to be 
l.o. and CRA+ is used (Definition 14, 
bracket-2, steps: 1-7). In this case: The 
last clause A of the re-arranged Clause 
Set is separated (step 3) and the SR-DAG 
of node [q’] is formed again, first with 
2CNF[q’]= 2CNF[q]\A (step 4), before a 
recursive call of Align is attempted (step 
5). In those first steps: Size[q’]=M-1. 

Since: 2CNF[q’]=2CNF[q]\A and as per 
(step 4) all nodes whose Clause Sets 
begin with 2CNF[q]\A, i.e., [q] as well, are 
reconstructed: [q’] must have been a 
CN/MSCN of size M-1, before its size is 
augmented by A. When Align is called 
then in (step 5) with the last clause A, 
Size[q’]=Size[q]=M which was to be 
shown.  
 

c- If Splits are not accounted for at any 
size-level j>1, then: Per (Definition 14) 
of 2SAT-GSPRA+: A node can have in 
any step only one copy which either 
remains at such a level-j or is propagated 
up one level to become part of level-j+1, 
but not both. Recall that this is not like 
the case of a Split, where one copy of the 
node remains as it is and another copy (or 
more) is resolved with a new 
clause/Clause Set moving up the 
hierarchy (recall Definition 6, Splits). 
Hence, we can show the property using 
induction on j: 1<j<=M as follows:  
 

Base-Case: For j=2: Since up1 is the 
upper bound of nodes generated in size-
level 1 during the whole process of 
resolution, the worst case is that all up1 
are added to level 2. Since Splits are not 
counted at level 2, they must be also the 
only nodes added at that level. Therefore: 
up2 <= up1 
 

Induction Hypothesis: upj<=up1 for 
size-level j, j>1 
 

Induction Step:: Because any node 
formed at level j+1 at any step of the 
resolution can either come from the 
lower j-level, or formed via Split and we 
don’t count Splits: upj+1 cannot be > upj, 
which means upj+1<= upj and thus per 
induction hypothesis upj+1<=up1 
(Q.E.D.) 
 

Lemma 6: (Aligned MSRTs.o Base 
Cases) All size 1,2 nodes of any 
MSRTs.o of a 2CNF Clause Set S 
produced by 2SAT-GSPRA+ are aligned.  
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Proof: For size 1 nodes it is clear that the 
MSRTs.o representing any single clause 
is aligned per (Definition 12) with the 
single clause itself being the Alignment-
Clause. For size 2 nodes of the form 
S={{a,b}{x,y}}  let's recall that 2SAT-
GSPRA+ converts any such Clause Set to 
a l.o. Clause Set using CRA+ (step 3, 
Definition 14). This leads to the 
following cases: 
 

Case 1 (Figure 13): No literals are 
common between the two clauses. {x,y} 
is then the Alignment-Clause 
 

Case 2 (Figure 14): There is one Literal 
in common independent of the specific 
place of this Literal. Because of RPC of 
CRA (c.f. Definition 7, 2-a), all Clause 
Sets will be converted via CRA+ to the 
form {a,b}{a,y} which has {a,y} as 
Alignment-Clause.  
(Q.E.D.) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 14 

b 
a {b}{y} 

{a, b}{a,y} 

TRUE 
{y} FALSE 

 
TRUE 

FALSE 

{b11}{x,y} 

{a1, b11}{x,y} 

{x,z} 
{x,y} 

a1 
b11 

FALSE 

Figure 13 

x 
TRUE 

{y} 

y 
TRUE 

FALSE 
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Lemma 7: (Alignment MSRTs.os) 
2SAT-GSPRA+ produces MSRTs.os with 
aligned nodes39 and if Splits are not 
counted, then for the whole process of 
resolution: The total number of 
generated size-1-level nodes cannot 
exceed RCC2-SAT*M2 
 

Proof: 
1. Alignment MSRTs.os (Induction on 

M)  
Base Case: M=3-sized MSRTs.os are 
aligned because their M=2-sized 
nodes or sub-trees produced by 
2SAT-GSPRA+ are all aligned 
(Lemma 6) and (as per Definition 13) 
their M=3-sized nodes or sub-trees 
are l.o. The fact that all size M=3 
nodes or sub-trees are aligned makes 
in the same way all size M=4 nodes 
aligned and so forth. Inductively: All 
M-sized nodes are aligned because all 
their M-1-sized nodes or sub-trees are 
aligned and their M-sized nodes of 
sub-trees are l.o. This implies that any 
final MSRTs.o is an Alignment 
MSRTs.o. 

2. Size-1 level nodes created in any step 
k<=M can only come from ACS and 
ACS cannot have more than RCC2-

SAT*M per (Definition 13) i.e., the 
total number of generated size-1 
nodes for all steps cannot exceed 
RCC2-SAT*M2 

(Q.E.D.) 
 

Lemma 8: ∀SB, DB, tCN such that 
SB⊆DB and tCN formed in SB: tCN can 
always be avoided by appropriately 
choosing the DB Sorting Condition. 
Similarly: tMSCNs can be avoided as 
well. 
 

Proof: According to (Definition 1), a 
block is called DB if -ve and/or +ve 

 
39 As per (Definition 12) and (Definition 13): 
There is a subtle difference between aligned 
MSRTs.os and Alignment MSRTs.os. While the 

instantiations of block Literal a result in 
Sets S1, S2 respectively and either S1 ⊆ 
S2 or S2⊆ S1. Figures 15 below shows an 
example for such a dissymmetric block 
Ba={{a, b}{¬a, b}{¬a, c}{a, c}{a, d}} 
(SB={{a, b}{¬a, b}{¬a, c}{a, c}}) 
sorted in two ways: One prioritizing 
clauses with –ve occurrences of a (Figure 
15a) and the other prioritizing those with 
+ve occurrences (Figure 15b). Only the 
first, relevant parts of the resolution trees 
are shown. An SB as well as a tCN is 
formed in the first case and bound to split 
in any further step, while the second case 
avoids such formation by utilizing the 
dissymmetry in clause {a,e} to prioritize 
+ve occurrences of a. Clauses with –ve 
occurrences of the block Literal just fill 
then the TRUE leaf node in any further 
step. As (DB Sorting Condition) does not 
affect any special condition used in 
CRA+ (especially the RPC condition in 
Definition 7 which only relates to HLs 
set here to block Literal a), a 
constellation like (Figure 15b) can 
always be reached w.l.o.g. by letting 
clauses with the most common block-
literal-sign (in Figure 15b: +ve) appear 
before the others in the sort order. 
 
 

 
 
 
 
 

 

 
 

 
 
 

former represent trees with only one clause or its 
derivation entailing all Clause Sets, the latter 
represent trees in which all nodes were aligned, 
not necessarily with the same clause. 

Figure 15-a 

Figure 15-b 
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What if Ba is a MSB, i.e., some of its 
Clause Sets belong to more than one 
Space (Definition 10)? It suffices to 
observe that tCNs cannot be formed in 
blocks scattered between different, 
mutually exclusive branches of the tree. 
I.e., the constellation for Ba in (Figure 
16) is not possible: The reason being that 
branch Literal a is the head of rank-2 
clauses occurring also in the base Set BS. 
Thus, to scatter them between different, 
mutually exclusive branches an 
additional variable would be needed, 
contradicting the fact that BS is a 2CNF 
Clause Set. Therefore: Ba must occur in 
one and only one node which might be 
shared by many branches coming from 
different spaces. But then: Even if Ba or 
any of its Clause Sets were parts of more 
than one space, the same arguments used 
above would apply, if one of those 
spaces is chosen for the node in which Ba 
is occurring. In other words: When 
2SAT-GSPRA+ reaches this node it can 
apply DB-Sorting in CRA+ as instructed 
in (Definition 14) and the proof of this 
Lemma without any additional effort. 
(Q.E.D.) 

 
40 The notation [3] stands for [q], q=3. 

III-4 CN-Splits in MSRTs.os 
The most important contributions of this 
work are the observations related to 
Splits of resolution trees on which l.o. 
conditions are imposed. As mentioned 
before: Only CN-Splits need to be 
thoroughly investigated. The other type 
of Splits, N-Splits (c.f. Definition 6), 
cannot occur during resolution work of 
2SAT-GSPRA+, since no node n 
containing Clause Set S and formed in 
step k, can be duplicated in steps >k, 
while S is resolved with a clause whose 
least-Literal is new and has an index 
strictly smaller than all or any indices of 
head-literals in S. Such a case would be 
a breach of the l.o. condition imposed by 
2SAT-GSPRA+ on all Clause Sets of all 
nodes (this is formally shown below in 
Lemma 9-b). As for CN- as well as 
MSCN-Splits, the following two cases in 
(Figure 17 and Figure 18) show practical 
situations occurring during resolution of 
l.o. Clause Sets, motivating the more 
abstract investigations of the Lemma 9. 
In (Figure 17), SS-MSCN3 is formed 
through instantiation of Clause Sets 
{{¬2,3}} and {{2}{¬2,3}} by 
substituting TRUE for Literal 2. It is 
clear that MSCN [3]40 can be augmented 
in size by adding additional clauses of 
the form {¬2, C} to the BS. A clause {2, 
x}, on the other hand, does not have any 
effect on [3], since it disappears from [3] 
the moment it is added to {{¬2,3}} and 
{{2}{¬2,3}}, i.e., continuing the 
current instantiation block B2 in BS 
either augments the size of MSCN [3] or 
doesn’t have any effect on it. If we 
attempt to split this node using clauses of 
the form {1, y} or {¬1, E} there is yet 
another restriction: The fact that BS is 
l.o. cannot allow any new blocks Bx 
starting after B2 to contain: x<2. 
Therefore: [3] cannot be split in any 
further step. 

Figure 16 

{a,b}{a,c}… {a,b}{a,c}.. 

a a 

{b}{c}… 
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In (Figure 18), DS-MSCN2 Splits the 
moment block B1 is continued in any 
way in the BS, i.e., when clauses of both 
forms {1,x} and {¬1,x} are resolved.  
 

 
 
The only way to augment the size of [2] 
is by starting a new block Bx which has 
to fulfill x>1, because of the l.o. 
condition imposed on the BS. However: 
When such a block starts, [2] cannot be 
split in any further step, since no more B1 
or B0 clauses are permitted. Are those the 
only possible cases of CN/MSCN Splits? 
Or are there other situations in which 
Splits can occur after MSCNs are 
augmented to big sizes? This is answered 
by the next central Lemma which 
investigates all possible situations 
encountered when Splits are attempted.  
 
Lemma 9: MSRTs.os formed by 2SAT-
GSPRA+ during resolution of a 2CNF 
Clause Set have the following properties: 

a. CNs and MSCNs containing 
clauses belonging to the BS 
or their images cannot split. 

 
41 Reads: The first appearance of an image of a 
in space-i occurs after the first appearance of an 
image of l in any Clause Set S’ of the same space. 

b. N-Splits cannot exist, but 
Rank-1, size-1 CN/MSCN 
Splits can.  

c. Rank-1, size-1 CNs and 
MSCNs which are not tCNs 
or tMSCNs and which are 
augmented to sizes>1 in step 
k, cannot split in steps >k. 

Proof: 
We recall the generic form of a MSCN 
[q]STsp1,sp2,sp3,.. (Figure 19) which is a 
generalization of a CN and shall be used 
here w.l.o.g. and which - as opposed to 
tMSCNs - was not formed in a 
symmetric block. Its edge- or branch-
literals can be either distinguished or not 
(c.f. Definition 10, Definition 11, Figure 
12): 
 
 
 
 
 
 
 
 
 

a- If the size of [q]STsp1,sp2,sp3,.. gets 
augmented by a rank 2 clause 
C1’={a’, b’}ST in step k, then, 
obviously, there exists a clause 
C1={a, b}∈BS and a mapping M 
such that: a’=MST(a), b’=MST(b), 
i.e., C1’ is an image of C1. In this 
step k: All literals of C1 and all 
their images were new in all 
branches and spaces leading to 
the MSCN per Definition 10, i.e.,  
∀i,lspace-i,S’, where lspace-i is a 
branch- or edge-Literal of 
[q]STsp1,sp2,sp3,., S’ Clause Set of a 
parent node containing lspace-i:  

lspace-i | aspace-i41 
  

Since all Clause Sets and all nodes are l.o., this 
means also that lspace-i < aspace-i according to 
(Lemma 1-b). 

Figure 17: SS-MSCN3 

  (....){.., q,...}Sp1 

aST=M1(x) 
cST=M3(z) 

 {..,q,…}..Sp3 

{ }ST 

 (....){ }Sp2 

bST=M2(y) 

Figure 19 

:: 

Figure 18: DS-MSCN2 
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Per (Lemma 1-a) we have: 
M(lspace-i)<M(aspace-i) -1 

To be able to split [q]STsp1,sp2,sp3,.. 

in any step>k, a subsequent 
clause C2={x, y}∈BS must 
traverse some or all branches and 
spaces leading to the MSCN and 
form two different Derivations 
(Definition 6, CN-Split). For at 
least one of those Derivations: 
Some parent node p, Clause Set S 
of p, space-i and edge- or branch-
Literal lspace-i must satisfy:  
xspace-i=lspace-i or yspace-i=lspace-i 
where C2’={x, y}space-i. 
Substituting in above formula -1 
we have: M(xspace-i)<M(aspace-i) 42 
On the other hand: As per the l.o. 
condition imposed on BS: a<=x 
and we have two cases43: 
If a=x then xspace-i=aspace-i and C2’ 
is added to S and augments the 
size of the MSCN instead of 
splitting it. 
If a<x, then as per (Lemma 1-b): 
(a | x), because BS is l.o., such a 
BS may have only one of the 
following two generic forms 
which realize the requirement 
that the first appearance of 
Literal x comes after that of 
Literal a44: 
{..{..,a}..{r, x}..{s,	¬x}…{a, b}…{x,y}…} 
    – 2 

 
42 The same arguments hold if yspace-i is used 
instead of xspace-i or if C2 is a unit clause. Those 
cases are omitted here to avoid unnecessary 
length.  
43 In [Abdelwahab 2016-2] the ‘<’ relationship 
alone is used to show a similar contradiction for 
the 3CNF case. The reasoning shown there, 
which is equally valid here and may be 

considered a shorter version of the proof of 

Lemma 9-a of this work, goes, informally, as 
follows: “If a MSCN is augmented in size by an 
image of a clause C from the BS, then all literals 
of C or their images must be ‘>’ any branch- or 
edge-literals of the MSCN. Since BS is l.o.: Any 
clause D from the BS, coming after C, can only 
possess literals which are ‘>=’ the HL of C, i.e., 

Or  
{…{a, b}…{x, y}…}   – 3 
We will show in what follows 
that both forms lead to 
inconsistency with respect to the 
given case assumption. To see 
this: BS in form-3 satisfies, per 
Lemma 1-c for any space-i: 
(aspace-i|xspace-i) and thus also: 
M(aspace-i)<M(xspace-i), per 
monotone property of mappings. 
Contradiction. Note that {x, 
y}space-i can only come before {a, 
b}space-i when it is ‘pulled’ by a 
clause {.., x}space-i appearing 
before {a, b}space-i In that case: 
Clauses are re-arranged through 
renaming to guarantee l.o. as 
shall be seen. However: Because 
x appears in BS for the first time 
in {x, y} and not as a TL in any 
clause {.., x} prior to {a, b} such 
a situation cannot happen and the 
relative position of x or any of its 
images to an image of Literal a in 
an arbitrary space remains the 
same for this case. 
By contrast: If BS is of form-2, 
this means that in some step>k it 
may be that: Either Ba comes 
before Bx or vice versa. 
Constellations like: 
S={..{x}..{a,b}..{x,y}..}space-i or  
S={..{¬x}..{a,b}..{x,y}..}space-i 

also ‘>’ branch- or edge-literals of the MSCN. 
To split a MSCN, however, there needs to be at 
least one branch- or edge-Literal of the MSCN 
‘=’ to a Literal in D. Contradiction” In this work 
the precedence relation ‘|’ is used to allow a 
thorough investigation of permutation 
possibilities of BS, leading all to the same 
contradiction as well. For 3CNF a lot more BS 
cases are involved, explaining why ‘|’ could not 
be used there.  
44 Because of the l.o. condition, any l.o. Clause 
Set cannot have a form in which blocks Ba or Bx 
are interrupted like in: {..{a, 
z}..{..,x}{a,b}{x,y}} or 
{..{..,a}..{x,..}{a,b}{x,y}} for example.  
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which are both not l.o. To make 
S l.o. in such a step, clauses are 
re-arranged, literals renamed and 
the sub-tree reconstructed by 
2SAT-GSPRA+ such that:  
(i)-{{x}..{x, y}}space-i or  
(ii)-{{¬x}..{x, y}}space-i comes 
either before or after {a, b}space-i. 
If {x, y}∈Bx comes after Ba in a 
space-i, the situation is similar to 
Form-3 discussed above and 
leads to a contradiction, when a 
split is attempted.  The MSCN is 
augmented, since {a<x}space-i.  
On the other hand: If {x, y}∈Bx 
comes before Ba in any one or 
more Spaces, it must be the case 
that only one Derivation of {x, y} 
is generated, otherwise the 
MSCN would split, before it is 
augmented contradicting the case 
assumption.  
In Summary: Because of the l.o. 
condition which prescribes that 
instantiation blocks cannot be 
interrupted (c.f. Footnote 44), 
Clause C2={x, y}∈BS in Form-2 
or Form-3 as well as all its 
possible derivations can only 
either augment the size of the 
MSCN or leave it untouched, but 
not split it.  
Same Arguments apply for unit 
(rank-1) clauses C1={a}∈BS 
which have images in 
[q]STsp1,sp2,sp3,.. 45. 

b- (Figures 20) shows a Split of a 
rank-1, size-1 MSCN occurring 

 
45 The intuition behind this central observation 
of Lemma 9-a is the following: When a clause 
C∈BS has an image C’ in a formed MSCN, then, 
per definition, all its literals and/or images of 
literals must have been new with respect to 
branches and edges leading to the MSCN as well 
as literals in Clause Sets of parent nodes. In that 
case: Any attempt to split the node using another, 
subsequent clause D∈BS will be in vain, because 
of the l.o. condition imposed on BS by 2SAT-
GSPRA+ which prescribes either that literals 

in the MSRTs.os for 
S={{0,1}{0,2}{1,2}{1,3}}. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

To show that N-Splits cannot 
exist: Suppose they do exist, this 
means - per definition of a Split 
(Definition 6) - that: ∃S’:2CNF 
Clause Set such that: For some 
n1,n2:Node∈SR-DAG, S1 is 
2CNFn1, S2 is 2CNFn2, n1≠n2: 
S’⊆ S1, S’⊆ S2 and ∄n: 
Child(n,n1)=Child(n,n2)=TRUE 
(i.e., there are no common sub-
trees between n1, n2, but there is 
a common sub-Set of clauses). 
This means also: Neither n1 nor 
n2 nor any children of them were 
CNs/MSCNs before (S’ was not 
the Clause Set of a CN/MSCN).  
Let F={..}+C+D+S, be the l.o. 
2CNF Clause Set whose 
instantiation results in a sub-tree 
like in (Figure 20c) in which S is 
a Clause Set, S’ a Set containing 
Derivations of clauses in S46, 

and/or images of literals in D be as new as those 
of C or that they be ‘pulled’ by TLs occurring in 
clauses before C, contributing thus to the 
formation not the splitting of any MSCN 
augmented in size by C.  
46 Clauses C, D whose images are not common 
between the two involved nodes may appear in F 
either before or after or bracing Sub-Set S, the 
origin of S’. F={..}+S+C+D, assumes S is 
resolved to create S’ before C, D. It relates, 
therefore, to CN- not N-Splits and is dealt with, 

Figure 20b 
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S1=D’+S’ (left node n1) and 
S2=C’+S’ (right node n2), where 
C,D∈F and C={x, y}, D={a, b}. 
C’ and D’ are Derivations of C, 
D and C’,D’ as well as any other 
Derivations of C,D ∉S’, 
C’≠D’47.  
Then: If L is the least Literal used 
to instantiate F: 
Case-1, L≠x: C’=C should have 
been ∈S1 as well as ∈S2 which 
means C’∈S’, since in the left 
node C’≠D’. Contradiction. 
Case-2, L=x: We distinguish 
three cases: 
i- x≠a, x∉D: D’=D should have 
been ∈S1 as well as ∈S2 which 
means D’∈S’, since in the right 
node C’≠D’. Contradiction. 
ii- x=a, x∈D: C’={y}, D’={}, 
D’’={b} are left- and right-
Derivations of D. Then: 
S2={y}+{b}+S’, which 
contradicts S2={y}+S’, because 
D’’={b}∉S’. 
iii-	G = I,¬G ∈D: C’={y}, 
D’={b}, D’’={} are left- and 
right-Derivations of D. Then: 
Because F is l.o., x=a was least 
Literal in F: Both y, b must be <= 
any literals L∈S’. This means 
that clauses {y} and {b} are 
going both to appear and get 
instantiated before any clauses in 
S’ in both branches of the tree 
({b} in the left branch, {y} in the 
right branch)48. This instantiation 

 
indirectly, in the other two parts of this Lemma 
showing that such a Split can only occur if 
rankS’<2 (Lemma 9-a) and SizeS’=1 (Lemma 9-
c). Form: F={..}+C+S+D is basically a 
combination between F={..}+C+D+S, the 
investigated one, and F={..}+S+C+D, i.e., does 
not provide substantially different insights and is 
therefore skipped here to avoid unnecessary 
length. 
47 For showing the result it is actually sufficient 
to consider the difference between S1 and S2 
constituting of only one clause (i.e., putting in the 

creates a common sub-tree 
between nodes n1, n2 whose 
Clause Set is S’ contradicting the 
definition of a Split.  
 
 
 
 
 
 

c- Suppose [q]STsp1,sp2,sp3 is a MSCN 
which is augmented in size in step k by a 
clause C’. We have just shown that if C’ 
or images of it are ∈BS, then no Splits 
can occur in any steps >k. What about the 
case where C’ is a unit clause, say {z}, 
but ∉BS and there are no clauses D’	 in	
the	Clause	Set	of	 the	MSCN such that 
D’ is image of a D∈BS? Augmenting the 

size of [q]STsp1,sp2,sp3 with such a C’ in 
step k means that there is a Literal L∈	C,	
where	 C={¬L, S}∈BS such that all 
instantiations of C through branches 
leading to [q] agree on its truth value, 
otherwise a Split would occur in this 
step. L is a (Non-Distinguished Literal), 

argument above either D’={} or C’={}), if we 
bear in mind that 2SAT-GSPRA+ is a sequential 
Algorithm and Splits are therefore always 
formed in a single step in which only one clause 
is processed. 
48 This remains the case even if CRA+ is used, 
since the (RPC-condition) has no effect on unit 
clauses. The reader may have noticed that the 
argument used in Lemma 9-b is independent of 
renaming and variable spaces and relates only to 
the l.o. condition and the application of the Least 
Literal Rule on a Clause Set. 

L 

F: …+C+D+S, C={x,y} 

 N1: S1=D’+S’ N2: S2= C’+S’ 

Figure 20c 

t 
N4: …{¬&, '} 

... 
y 

¬x 

[ ]+{z} 

N2:…{¬&, '} 

Base-Node:...{¬&, '} 

 N1: …{¬&, '} 

x 

y 
y 

Figure 21a: step k 

N3: …{t}{¬&, '}space-i 
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because distinguished ones like x in 
(Figure 21a) lead to different 
instantiations for different branches, i.e., 
Splits, per definition. It is not a Literal 
like t which, although non distinguished, 
appears only in some, not all branches of 
the tree. Such a Literal t would also 
create dissymmetry  and hence Splits 
when C is instantiated. L is called a 
CNAL (Definition 4). The Argument 
below amounts to showing that, in case 
such CNAL L is used to augment the size 
of [q]STsp1,sp2,sp3 in any step, no Splits can 
occur in furtherance, unless Clause Sets 
of the form:  
{..{..<Literal i>..} {..no < Literal i >..} 

{..< Literal i >}…} – wrong-form 
are allowed for <Literal i>, used for 
splitting the MSCN, a situation which, in 
the studied cases, leads to inconsistency 
between imposed l.o. conditions on all 
sets (including BS) on the one hand and 
the to-be induced Split49 on the other. 
Intuitively, the Argument goes as 
follows: If CNAL L augments the size of 
the MSCN through a clause, say 
C={¬L, S}∈BS, then L cannot be used to 
split the same node in any further step, 
because any clause E containing L and 
coming after C in the BS can either 
agree with C in the sign of L and shall be 
thus augmenting the MSCN, not splitting 
it, or disagree and in that case it leaves 
the MSCN untouched. If on the other 
hand a <Literal i >, different from CNAL 
L, is used to split the MSCN, i.e., E={i, 
j}, its first appearance in the BS must 
come before the instantiation Block of 
CNAL L, because otherwise <Literal i> 
would be greater than all branch- and 

 
49 Note that Clause Sets similar to wrong-form 
are not always breaching l.o. conditions. For 
example: S={{0,1}{0,2}{1,3}} (putting <literal 
i> = 1). 
50 The shown two cases are the only ones, 
because <literal i> which causes the 
contradiction may here be anyone of the non 

edge-literals of the MSCN, including 
CNAL L, per the l.o. condition of BS, 
and thus not able to split the node. A 
block headed by <Literal i> cannot be 
interrupted as in the above wrong-form, 
which leaves then only one constellation 
of the BS to be thoroughly investigated 
in which <Literal i> is a TL of some 
clause before C such as: 

{..{a, i}..{¬L, '}…{i, j}…} 
Although such a constellation is l.o., 
where a<i<L<z, instantiation of least 
literals by 2SAT-GSPRA+ necessarily 
results in the following non l.o. form:  

{..{i}..{¬L, '}…{i, j}…} 
In any space, the conversion of this form 
to l.o. (similar to what we have seen in 
Lemma 9-a) ‘pulls’ the clause E to a 
position in which it can only produce one 
single Derivation through all spaces and 
contribute to the formation of the MSCN 
rather than to splitting it. 
Formally, we distinguish the two only50 
cases: 
  

CNAL literals x (first case)/y (second case) or t. 
With respect to what needs to be shown: Those 
literal types are similar. They: 1- must disappear 
when the MSCN is augmented in step k and 2- 
can theoretically cause Splits in steps>k. The 
argument shown uses <literal i>=t to illustrate 
the idea w.l.o.g. t can either appear before or after 
the CNAL. 

t 

N4: …{¬&, '} 

... 
y 

¬x 

[ ]+{z} 

N2:…{¬&, '} 

Base-Node:...{¬&, '} 

 N1: …{¬&, '} 

x 

y 
y 

Figure 21a, step k 

N3: …{t}{¬&, '}space-i 
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Case 1 (step k)- CNAL L=y 
appears in BS after <Literal i> 
i.e., (x | y), (t | y) and thus also 
x<y, t<y, since BS is l.o. (Figure 
21a).  
To split [q]STsp1,sp2,sp3 using t or 
any of its images in a step>k and 
space-i, two possibilities may 
occur with respect to Clause Set 
S={..{t}{¬E, S}}space-i of node 
N3: 
a) S becomes = 

{..{t}{¬E, S}{t,z’}}space-i, 
then either {t} was already 
∈BS and thus an image of S 
is ⊆	BS indicating a breach of 
the l.o. condition, because t 
must then be both <y and >=y 
(per l.o.) or there exists a 
clause D∈BS such that: 
D={a, t}. But then the BS 
contains a subset of clauses 
or images of the form 
{..{a,t}..{¬E, S}..{t,z’}..} 
where t>=y also leads to the 
same inconsistency. 

b) S becomes = 
{..{t}{¬E, S}{z’, t}}space-i. 
As t>z’>=y, this means that 
we have a contradiction for 
all possible cases of the BS 
like in a) 

 

Case 2 (step k)- CNAL L=x 
appears in BS before <Literal i> 
i.e., x | y, x | t and x<y, x<t, (Figure 
21b), we have ∀i:tspace-i<zspace-i, as 
well since {z}space-i must augment 
the size of the MSCN.  

 
51The arguments used in [Abdelwahab 2016-2] 
for the corresponding 3CNF case amount to 
showing that Clause Sets similar in form to: 
{..{t}..{¬x,'}..{t,z’}..}will always occur in 
parent sets of [q], if such a node is supposed to be 
augmented first in size by a CNAL z, then split 
using t, consistently breaching the l.o. condition 
and requiring re-arrangement of clauses by CRA+. 
To completely avoid the impression that this re-

As before: To split [q]STsp1,sp2,sp3 using t 
or any of its images in a step>k and 
space-i, two cases may occur with 
respect to Clause Set S={..{t}{S}..}space-i 
of node N3: 

 
 
 
 
 
 
 
 
 
 
 
 

a) S becomes = {..{t}{S}..{t,z’}}space-i, then 
either {t} was ∈BS and in that case 
{..{t}..{¬x,S}..{t,z’}..}⊆	BS is a breach 
of the l.o. condition51 or  
{..{a,t}..{¬x,S}..{t,z’}}⊆BS and we 
have to consider two possibilities:  

∀i:(a | x)space-i:  In that case BS has only one of 
the two forms52: 
 {..{a,t}..{¬x, '}..{t,z’}..}- form1 
Or 
 {{r, a}..{s,x}..{a,t}..{¬x,'}{t,z’}}- form2 
Form1 leads to a contradiction with the 
case assumption, since x appears for the 
first time in {¬x, S} and is thus per l.o. 
condition > all literals to its left including 
t according to (Definition 1-c).  
Form2 needs to be transformed by 
2SAT-GSPRA+ to S={..{t}{S}}space-i 
in steps<= k according to case 
assumption. In this form r,s must be 
<a, x, t as per l.o. condition of BS. 
This transformation, which creates 
intermediate spaces, can only be 

arrangement may lead to the same node-count as 
the one obtained when Splits are allowed, the 
arguments used here reflect on the original BS, 
rather than any arbitrary parent Set, showing that 
all possible l.o. BS forms (used by 2SAT-
GSPRA+) for the constellations shown in Figure 
21 cannot allow – without contradiction - first 
augmenting the size, then splitting such a [q].  
52 C.f. Footnote 44 in point a- of this Lemma. 

t 

... 

(	
N2:…{z} 

Base-Node: …{¬(, '} 

 N1:…{z} 

x 

y 

¬y 

Figure 21b: step k 

N3: {…{t}{'}…}space-i 

(	

[ ]+{z} 
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done - using the least Literal rule - 
as follows: 
Suppose r<s, then form2 yields two 
sub-sets: 
{{s, x}..{a,t}..{¬x,'}{t,z’}} - subset1 
{{a}..{s,x}..{a,t}..{¬x,'}{t,z’}} - subset2 
Because subset2 is not l.o., CRA+ 
converts it giving a form where {a} 
and {a, t} are joined in one block Ba 
after which clause {t,z’} appears, i.e.:  

{{s,x}....{¬x,'}..{a}{a,t}..{t,z’}}space-j - subset2’ 
Thus, in such a space-j: zspace-j<tspace-j 
contradicting the case assumption as 
well as (a | x)space-i. 
Subset1 yields when resolved two 
additional Clause Sets: 

{..{a,t}{¬x,'}{t,z’}}   - subset3 
{{x}..{a,t}..{¬x,'}{t,z’}}  - subset4 

Subset3 is similar to form1 and leads 
to a contradiction with ∀i:tspace-

i<zspace-i. Subset4 needs to be 
converted to l.o.: 

{..{a,t}..{t,z’}..{x}..{¬x,'}..}space-l - subset4’ 
Where {x} and {¬x,S} are summed 
up in one block Bx which has the 
effect in such a space-l that (tspace-l | 
xspace-l) contradicting the assumption 
that tspace-l splits the MSCN after it is 
augmented using the CNAL xspace-l. 
Suppose r=s, then form2 becomes: 

{{r, a}..{r,x}..{a,t}..{¬x,'}{t,z’}} - form2’ 
Instantiating this formula in 
steps<=k produces two sub-
formulas:  

{..{a,t}{¬x,'}{t,z’}}   - subset5 
{..{a}..{x}..{a,t}..{¬x,'}{t,z’}} - subset6 

Subset5 is again similar to form1 
above. Subset6 has to be converted 
to l.o. yielding blocks Ba, Bx which 
are uninterrupted and come behind 
each other, since (a < x)space-i as per 
case assumption. 

{..{a}{a,t}..{t,z’}…{x}{¬x,'}} space-m - subset6’ 
In such space-m:  (tspace-m|xspace-m) 
contradicting the assumption that 
tspace-m splits the MSCN after it is 

 
53 The reader may wish to verify this for 
him/herself in a way similar to the one done for 
a). One will find out, that changing the position 

augmented using the 
CNAL xspace-m. 

∀i:(x | a)space-i: In that case BS has only 
one of the two forms: 
{..{¬x, '}..{a,t}…{t,z’}..} - form3 
Or 
{{r, x}..{s,a}..{a,t}..{¬x,'}{t,z’}}- form4 
Form3 makes z<t and forbids thus, 
because of (Lemma 1-c), in any 
formed space-i, that: tspace-i <zspace-i, 
unless the precedence of {¬x, S} on 
{a,t} is changed which would be a 
breach of the l.o. condition, since 
(x | a) for all spaces.  
For Form4 there are two cases: 
Suppose r<s Then because 
x<s<a<t the following two subsets 
will result of the application of the 
least Literal rule and conversion to a 
l.o. set: 

{ ..{¬x,'}..{s,a}..{a,t}..{t,z’}} space-n - subset7 
{..{x}{¬x,'}..{s,a}..{a,t}..{t,z’}} space-o - subset8 

Both forms don’t fulfill case 
requirement: tspace-i <zspace-i 
Suppose r=s: Then form4 becomes  

{{r, x}..{r, a}..{a,t}..{¬x,'}{t,z’}}- form4’ 
Where r<x<a<t and the following 
two sub-forms result from the 
application of the least Literal rule 
and/or the l.o. condition: 

{..{¬x, '}..{a,t}…{t,z’}..}space-p - subset9 
{..{x}{¬x,'}..{a}{a,t}..{t,z’}}space-q - subset10 

Both forms don’t fulfill case 
requirement: tspace-i <zspace-i 
 

b) S becomes = {..{t}{S}{z’,t}} and since 
t>z’>=z, the same contradictions seen in 
a) can be shown for all possible BS 
constellations.53 
 

Resuming all cases of Lemma 9-c: BS 
constellations supporting the intention of 
first augmenting the size of [q]STsp1,sp2,sp3 
using a CNAL L in step k, then splitting 
it using <Literal i> all lead to 
inconsistencies, if <Literal i>≠ L. Since L 

of t in {t, z’} to become {z’,t} does not affect any 
argument used here. The case is not extended to 
avoid unnecessary length. 
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itself cannot be used to split [q]STsp1,sp2,sp3 
in steps >k, as seen above, this means that 
such a MSCN cannot be split. 
Here is yet another shorter version of 
the proof of Lemma 9-c using only the 
‘>’ relation for interested readers: 
In step k: L is CNAL in a clause {¬L, S } 
augmenting the size of [q] with {z}. As 
per the definition of a MSCN : Literal z is 
> all branch and edge literals of [q], i.e., 
z>L,a,b,c,d, where a,b,c,d,.. are all edge- 
and/or branch-literals.  
In any step >k a clause C={x,..} cannot 
use L to split [q], since any +ve 
occurrence of L in C will keep [q] as it is. 
A –ve  occurrence of L in C will only 
augment the size of [q].  
If (x>z) and (L≠x) then also x>a,b,c,d. 
However: To split [q]: X needs to be 
equal to either one of them. 
Contradiction.  
If (x<z) and (L≠x) then per l.o. condition 
of BS also x>L and x cannot appear in a 
Clause C’ before {¬L, S } as a HL, i.e., it 
must be that C’={..,x}, L<x<z. Since L, z 
are literals of the same clause, they must 
be kept together in l.o. Clause Sets of 
parent nodes of [q] and their images in 
any space will always appear either 
before or after Literal x or its images 
causing contradictions to the case 
assumption in all cases. 
To see this : If x or any of its images split 
the MSCN there has to be an edge marked 
‘x’ of a parent node n in certain space-i 
such that 
2SATn={..{x}…{¬L, S}….{x,…}} space-i 
which is not l.o. 
Making 2SATn l.o. draws 
Bx={{x}{x,..}..}space-i together prior to 
{¬L, S}space-i which is supposed to 
augment the size of the MSCN before 
{x,..}space-i splits it. Contradiction. Even if 
Bx is drawn after {¬L, S}space-i like in: 

 
54 Rank 1 nodes of any size (i.e., nodes 
containing only unit clauses) have a linear 
number of nodes or sub-trees (in M) 

2SATn={..{¬L, S}..{x}{x,…}}space-i, this 
makes (x>z)space-i and thus also xspace-i>all 
edge- or branch-literals of the MSCN in 
this space, i.e., not able to cause a split, 
and augmenting the size of [q] only. 
Contradiction. (Q.E.D.) 
It is imperative to summarize the 
important findings of Lemma 9 before 
proceeding to the next section: 
 

a) (Lemma 9-a) shows that BigSps, i.e., 
Splits of rank 2 CN- or MSCN nodes 
cannot occur during 2SAT-GSPRA+ 
resolution. This anchor result of the 
work presented here puts a linear 
upper bound54 on the number of 
nodes which may be created via 
duplication (Split) of any existing 
CN/MSCN in any single step and 
basically means that sub-problems 
which need to be solved in different 
manners again and again by 2SAT-
GSPRA+ are always strictly easier to 
solve than the original problem.  

b) (Lemma 9-b) shows cases where size-
1 Splits occur. It also shows another 
anchor result, namely: No N-Splits 
can occur, because of the l.o. 
condition. 

c) (Lemma 9-c) shows that the linear 
upper bound of point a) is an 
exaggeration and only a constant 
number of nodes are generated 
whenever a CN/MSCN splits  in any 
step, because Splits cannot occur for 
CN/MSCN sizes>1. 

 

Demonstrating then that the maximum 
number of such CNs/MSCNs/sub-
problems must also be small suffices for 
establishing the main node count result. 
This is done in the next section.  



Abdelwahab, N. 
 

 

 

57 

57 

III-5 Complexity of 2SAT-FGPRA 
We proceed by showing that the number 
of unique nodes generated by 2SAT-
GSPRA+ is bounded above by a 
polynomial in M, the number of clauses. 
As 2SAT-GSPRA+ uses in each iteration 
a data structure in which newly created 
Clause Sets are stored in their CRA-
Form (LCS, c.f. Definition 14) there is a 
guarantee that no more nodes/Clause 
Sets are generated than the ones given by 
the maximum unique node count. 
(Lemma 2-c) makes sure that CRA-
Forms in CNs and/or MSCNs represent 
Clause Sets which are logically 
equivalent although they may belong to 
different spaces. 
 

Lemma 10: In any step i>=0 of 2SAT-
GSPRA+ resolving an arbitrary BS of 
size M=i+1 with Clause Ci: Newly added 
clauses used to align any nodes/sub-trees 
of Clause Sets S’ of size <M produced in 
steps <i can only come from ACS. The 
total number of unique-nodes produced 
by 2SAT-GSPRA+ for S in the final 
MSRTs.o, including those generated by 
Splits, is, therefore, bounded above by: 
 

2+ c*RCC2-SAT2 *M4 + RCC2-SAT *M3, 
c<=2, i.e., O(M4) 

 
 

Moreover: This bound remains 
polynomial, i.e., O(M6), even if Splits 
are allowed which are not BigSps. 
 

Proof: (by induction on M) 
 

Base-Case: M=1: For size 1 nodes the 
MSRTs.o representing a single clause 
which is aligned per definition, the single 
clause itself being the (Alignment-
Clause). For M=1 we have, therefore: 

i=0: 2 <2+ 2*(4)2 *(1)4 
 

Illustration Case: M=2: The alignment 
of clause C1 to C0 in step i=1 of the 
resolution adds in the worst case 2 to the 
nodes of the MSRTs.o of clause C0 which 
are also 2 at most (c.f. Lemma 6 and with  

 
Figures 13 and 14). Thus, for step M=2 
we have: 
 
 

i=1: 2+2 <2+ 2*(4)2 *(2)4 
 

 

The practically used ACS-portion is 
comprised of clause C1 and/or its 
derivations. 
 

Induction Hypothesis (size M): 
An IRT with a base-node of size M (step 
i+1) in the form of (Figure 22) (here k=2) 
is produced by adding in each step only 
elements of the ACS to the size 1 nodes 
levels (while aligning clauses to the 
intermediate IRTs of previous steps) and 
the total number of unique-nodes, 
including those resulting from Splits, do 
not exceed: 
 

2+c*RCC2-SAT2 *M4 + RCC2-SAT*M3, c<=2 
 
 
 
 
 
 
 
 
 
 
 
  Figure 22: IRT with base-node size M 
 

:: 
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Induction Step (size M+1): 
When IRT is resolved in step i+2 via 
2SAT-GSPRA+ with a clause C: 
 

1. k M-sized nodes shall become k M+1-
sized nodes and l.o. as well (per 
definition of 2SAT-GSPRA+ and the 
fact that the BS is l.o.). The breadth k 
of the first clause C0 in S is not altered 
and thus also the number of nodes in 
the (Top-part). No other M+1-sized 
nodes can be formed. 
 

2. Recall that as per (Lemma 7): The 
total number of generated size-1-level 
nodes cannot exceed  
RCC2-SAT*M2, if Splits are not 
counted. In essence we show the same 
again here, but in the context of only 
one resolution step: For all <M-sized 
nodes (when they are resolved with C 
forming nodes of Sizes <= M): The 
induction hypothesis applies, i.e., step 
i+1 produced for each one of them at 
most  

|ACS|=RCC2-SAT*M  
 

new nodes of size 1 in their respective 
sub-trees (not counting Splits). 
Suppose now that in step i+2 C is 
aligned to such a node n (Figure 23) 
needing for the alignment of sub-trees 
of n (not necessarily in the same 
space) some other clauses C’, C’’ 
from ACS. If two or more sub-
MSRTs.os of node n and/or any other 
node are aligned with the same clause 
C, C’ or C’’, then on size-1 level of 

 
55 Trivial CNs/MSCNs are not accounted for, 
because they can be avoided altogether w.l.o.g. 
as per (Lemma 8). 
56 This is a theoretical exaggeration, since CRA-
Forms of clauses like {a,b} and {x,y} are always 
the same in reality so that only RCC2-SAT size-1 

nodes are practically added to the overall 
MSRTs.o in this step. Keeping the factor M lets 
us assume that 2SAT-GSPRA+ handles 

the final, overall MSRTs.o a 
CN/MSCN possessing one unique 
CRA-form (c.f. Definition 14 in 
which CRA+ is always applied before 
storing any Clause Set) will be built 
only one time within a space or 
between different spaces representing 
each one of C, C’ or C’’. In addition: 
All such non-trivial CNs/MSCNs55 
can only represent members of ACS 
per definition of ACS (Definition 13). 
Thus, the total number of newly 
formed, unique, size 1 nodes for all 
trees and sub-trees in this step (which 
may or may not become non-trivial 
CNs/MSCNs) cannot exceed |ACS| in 
the worst case56, i.e.: RCC2-SAT *M. 

 
 
 

  

permutations of different clauses of the base set 
differently, storing them in separate places when 
they appear. This is of course not how 2SAT-
GSPRA+ works, but gives us a good way to 
exaggerate our assumptions about its way of 
work so that we can get a more reliable upper 
bound. The exaggeration would be then: To leave 
the M-factor, while counting any possible Splits 
of all those redundant nodes as well. 

Space-1 

SRT1 SRT2 SRT3
3 

…….. 

C 

 Node n 
C aligned to n  

C’’ C' C 

C’ C’’ 

Space-N 

Size-1 Level 

 

Figure 23 

 

:: 
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3. As per 2., the total number of 
generated non-trivial CNs/MSCNs at 
level 1 cannot exceed RCC2-SAT *M2 
in all steps without counting Splits. 
To count Splits at level 1: Recall that 
one copy of a node remains as it is and 
another copy is resolved with a new 
clause moving up the hierarchy (c.f., 
e.g., Figure 20). Assuming for the 
worst case that each one of those 
nodes is split by the newly resolved 
clause C in step i+2 and remains in 
the same level as it is as well: There 
are RCC2-SAT ways to do so for any 
CN/MSCN per definition57. Those 
Splits can only form Clause Sets of 
size 1 and produce only a constant 
amount c(=<2) of new nodes each 
time58. If we assume (also as an 
exaggeration) that step i+2 adds all 
ACS-elements of point 2 as new 
nodes as well59, this makes the 
maximum number of newly added 
size 1 nodes in this step: 
 

c*RCC2-SAT2 *M2+ RCC2-SAT *M 
 

This means that 
 

c*RCC2-SAT2 *M3 + RCC2-SAT *M2 
 

is an upper bound of nodes added 
to size-level 1 during the whole 
process of resolution. What about 
added nodes of sizes >1? 
(Lemma 9-c) assures us that there 
are no Splits of nodes at j-size 

 
57 Recall that RCC2-SAT is the cardinality of the 
Set of all clauses which are permutations of 
Literal arrangements of a 2CNF clause C. 
58 We are assuming hence that each newly 
resolved clause in each step i+2 comes with a 
least-literal equivalent to previously instantiated 
block literals of parent-nodes of every non-trivial 
CN/MSCN created before in every space and 
Splits this non-trivial CN/MSCN in all possible 
ways without breaching any l.o. condition. A 
clear exaggeration. 
59 Even if new nodes coming from ACS in this 
step are counted twice this way: It only helps the 
exaggeration intended here. 

levels, for j>1. This means, we 
can apply the (expansion Lemma 
5-c) which asserts that in the 
worst case and for the whole 
resolution process: The upper 
bound of the number of new 
nodes at all those j-size levels 
cannot exceed 
 

c*RCC2-SAT2 *M3 + RCC2-SAT *M2 
 

confirming thus the given O(M4) 
bound for all levels.  
Resuming again: The O(M2) nodes 
generated in size level 1, which 
include (as a worst case) also all 
possibilities of Splits of CN/MSCNs 
at this level, may in a further 
exaggeration all be propagated up the 
hierarchy of sizes to form at each step 
and for each size-j-level of nodes 
O(M2) additional, new ones. If they 
are not propagated, they remain in 
their respective levels and are not 
accounted for further up in the 
hierarchy60. 
 

4. What happens if we relax (Lemma 
9-c), i.e., allow Splits at size-levels j, 
j>1, which are not BigSps? Any such 
Split would cause only O(M) new 
nodes to be generated each time it 
occurs (as the nodes involved can 
only be of rank 1). According to 
(Lemma 5-b) any CN/MSCN [q] in a 
size-level j and step k must be a 
CN/MSCN [q’] of size-level j-1 

60 Remember that, because there are no Splits at 
such levels, a node in any size-level-j, j>1, can 
either be propagated up in the hierarchy or left as 
it is, but not both, the argument here can also be 
expressed as follows: The O(M2) new nodes 
formed at size-level 1 in each step may in the 
worst case always stop at a certain level j>1 and 
not be propagated further up in the hierarchy. In 
that case level-j will contain at the end of the 
resolution process at most O(M3) unique nodes. 
Assuming that all other levels are similar to 
level-j (an exaggeration which can never 
happen), we get the O(M4) bound.  
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created in steps<k and augmented by 
the new resolved clause in step k. This 
means that the number of 
CNs/MSCNs which can split in any 
size-level j cannot exceed the 
maximum number of CNs/MSCNs at 
size-level j-1 and ultimately at size-
level j=1, i.e., in the worst case O(M2) 
as seen in point 2. Relaxing Lemma 9-
c, we can, therefore, assume as a 
worst case that a new resolved clause 
at any step k splits all CNs/MSCNs 
residing in all levels j>=1 in RCC2-SAT 
possible ways creating at each level 
the maximum possible amount of 
RCC2-SAT*O(M) new nodes for each 
CN/MSCN and that those nodes may 
all be propagated up the hierarchy as 
well. Thus, the upper bound of unique 
nodes created through Splits at any 
level j>=1 and in any step k is: O(M3), 
i.e., O(M4) for all steps. Using a 
simple inductive argument on size-
levels 1<=j<=M, we can show that the 
overall upper bound of unique nodes 
is O(M6), whether nodes are 
generated through Splits or through 
propagation. 
 

Base Case: Level j=1 contains at the 
end of the resolution at most: 
O(M3)<=1*O(M4) unique nodes as 
just seen. 
 

Induction Hypothesis: Size-level j 
contains at the end of the resolution: 
j*O(M4) unique nodes, j<=M  
 

Induction Step: For size-level j+1: 
As per 2SAT-GSPRA+ (Definition 
14) a node can only become of size j 

 
61Definitions: (14) and (15) of both Algorithms 
deliberately leave the issue of choosing C0, the 
head clause of 2CNF Clause Set S to the 
respective implementations of the Algorithms, 
thus opening up the possibilities for choices 
which may lead to different node counts. 
(Lemma 11) shows that whatever those choices 
for 2SAT-GSPRA+ are, 2SAT-FGPRA can 
simulate them correctly. Since only l.o. Clause 

in any step k when either it was of size 
j-1 in steps <k and it got augmented in 
size or when it was generated via 
Split. Unique nodes created through 
Splits cannot exceed O(M4) for all 
levels as just seen. Per induction 
hypothesis: The number of unique, 
size-level j nodes never surpasses 
j*O(M4), which makes the total 
number of unique nodes in size-level 
j+1 after resolution terminates: 
(j+1)*O(M4). As j<=M, we have in 
each such level j at the end: O(M5), 
making the overall upper bound for 
the whole MSRTs.o: O(M6). 

(Q.E.D.) 
 

Finally: The following  Lemma shows 
that 2SAT-FGPRA (Definition 15) can 
simulate 2SAT-GSPRA+ correctly, i.e., 
producing exactly the same MSRTs.o 
when taking the same Clause Set sorting 
choices. It also gives an asymptotic 
upper bound of the number of operations 
needed by 2SAT-FGPRA61. 
 

Lemma 11: The following is true: 
a- For any arbitrary 2CNF Clause 

Set S: ∃G:MSRTs.o such that: 
2SAT-FGPRA(S)=2SAT-GSPRA+(S)=G. 

b- For 2SAT-FGPRA to produce 
G shown to exist in point a-: For the main 
Assistance Operations62 used by 2SAT-
FGPRA on 2CNF Clause Sets S of size 
M: Node creation and returning results 
(function SubTree), MSRTs.o creation for 
a single clause (function Convert), 
CRA+, Forming new Clause Sets using 
least-Literal-rule (instantiation), Storing 
(nodes), Searching Clause Sets in LCS: 

Sets are used in any sub-problems generated by 
instantiation operations, 2SAT-FGPRA is 
producing a MSRTs.o equivalent to one produced 
by 2SAT-GSPRA+, which always has a 
polynomial number of unique nodes as just seen 
in (Lemma 10). 
62 By Assistance Operations we mean modules 
and/or sub-functions used in the pseudo-code of 
2SAT-FGPRA. 
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The total, worst case number of 
Primitive Operations63 performed by any 
single one of them during a run of 2SAT-
FGPRA is: O(M9). Moreover: Relaxing 
Lemma 9-c yields an upper bound of 
O(M13). 

 

Proof: 
a- (induction on M, the size of S). 
Assume that both Algorithms use the 
same ordering choices in CRA+. Both 
Algorithms use CRA+ in their 
preparation phases (points 2 and 3 in 
Definitions 14 and 15) on the same S, 
i.e., they order clauses in S in the same 
way. Remember also that they always 
convert Clause Sets to l.o., particularly in 
Top-Parts of resolution trees, using the 
same CRA+ as well. 
 

Base-Case: M=1: Because there is only 
one C0 ∈ S, they convert it into the same 
MSRTs.o G. In that case obviously:  
2SAT-FGPRA (S)=2SAT-GSPRA+(S)=G. 
 

Induction Hypothesis: 
For all 2CNF Clause Sets S of size M: 
∃MSRTs.o G such that:  
2SAT-FGPRA (S)=2SAT-GSPRA+(S)=G. 
 

Induction Step: If S is l.o. of size M+1, 
then let S’=S\A, where A is the last 
clause in S. Per induction hypothesis: 
∃MSRTs.o G such that: 
 

2SAT-FGPRA(S’)=2SAT-GSPRA+(S’)=G  
 

and we distinguish two cases: 
 

1- When A is aligned to G by 2SAT-
GSPRA+ to form G’ of S there is no 
breach of any l.o. condition in any 
parts of G and A is appended to all 
Clause Sets of G in Top- as well as 
Bottom-parts. In that case: Top-parts 
of G’ are clearly equivalent for both 
Algorithms because Literal choices 
of C0 ∈ S are not affected by the 
addition of clause A in either case 

 
63 Primitive Operations take a constant amount 
of time in the RAM computing model. 

and A is appended to Clause Sets 
which are exactly the same for both 
Algorithms. We use the induction 
hypothesis for Bottom-parts stating 
that there are always graphs G1, 
G2,…Gn which are equivalent for 
both Algorithms and can be 
substituted for Bottom-parts of G’ to 
conclude that: 

2SAT-FGPRA (S)=2SAT-GSPRA+(S)=G’ 
 

2- When A is aligned to G by 2SAT-
GSPRA+ to form G’ of S and there is 
a breach of the l.o. condition in some 
Clause Set S’’ in the Top-part of G’: 
Because this breach relates only to A, 
while all other clauses Ci ∈ S’’ are as 
per induction hypothesis the same for 
both Algorithms (and they use same 
choices for CRA+ as well), both 
Algorithms fix the breach generating 
the same exact Clause Sets in Top-
parts of G’ and produce thus the 
same, related Bottom-parts. If on the 
other hand A causes the breach in 
Bottom-parts whose Clause Sets are 
all of size M, the induction 
hypothesis applies and there are 
graphs G1, G2,…Gn which are 
equivalent for both Algorithms and 
can be substituted for such Bottom-
parts of G’, thus: 
 

2SAT-FGPRA(S)=2SAT-GSPRA+(S)=G’. 
 

b- Because of (Lemma 10), we know that 
the total number of unique-nodes in G 
cannot exceed 2+ c*RCC2-SAT2 *M4 + 
RCC2-SAT *M3, c<=2 (taking the result 
obtained without relaxing Lemma 9-c). 
Since G is produced by 2SAT-FGPRA as 
per point a- as well: The following are 
then upper bounds of the total number of 
invocations of Primitive Operations for 
all Assistance Operations listed above 
for that Algorithm (c.f. Definition 15): 
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1. 2+ c*RCC2-SAT2 *M4 + RCC2-SAT *M3 

times CRA+ (each node needs 
renaming of its Clause Set so that it 
can be stored in LCS in its CRA-
Form). Through (Lemma 3) it is 
known that CRA+ takes 
O(M2(logM+N)). Since N cannot 
exceed c*M, i.e., is in O(M)64, this 
makes the total worst case number of 
Primitive Operations for this 
category: O(M7).  

2. 2*(2+ c*RCC2-SAT2 *M4 + RCC2-SAT 
*M3) times instantiation (two new 
Clause Sets are formed for each node 
in the worst case). Instantiating a 
Clause Set by substituting values 
TRUE or FALSE for a certain Literal 
in all M clauses is an operation in 
O(M). This makes the total number of 
Primitive Operations for 
instantiation: O(M5). 

3. 2+ c*RCC2-SAT2 *M4 + RCC2-SAT *M3 

times node creation assuming that it is 
in O(c), i.e., O(M4). Same amount is 
needed for all SubTree function 
invocations, since getting from LCS a 
stored sub-tree using its index may be 
assumed to take O(c) operations. 

4. 2+ c*RCC2-SAT2 *M4 + RCC2-SAT *M3 

times Storing/Appending in/to LCS 
assuming that it is in O(c), i.e., 
O(M4). 

5. MSRTs.o creation for a single clause: 
O(c), since independent of M any 
clause can have at most 2 literals 
where 2 nodes are created for each 
one of them. 

6. 2+ c*RCC2-SAT2 *M4 + RCC2-SAT *M3 

times Searching Tuples in LCS. This 
search operation can be accomplished 

 
64 To c.f. this: Let M=f(N). f can be exponential, 
i.e., N=O(log M), polynomial, i.e., N=O(M1/k) 
for a given k or linear, i.e., N=c*M, c<=2, which 
is the largest count N can reach, representing the 
case where all clauses have distinct variables.  

in the least efficient way65 by 
sequentially comparing the sought 
Clause Set with all Clause Sets stored 
in the LCS, a single comparison of 
two Clause Sets being in O(M). In the 
worst case there are 2+ c*RCC2-SAT2 
*M4 + RCC2-SAT *M3 Clause Sets in 
LCS, i.e., O(M8) comparisons are 
needed. This makes the total number 
of Primitive Operations for Searching 
O(M9). 
 

If we relax Lemma 9-c we obviously get 
O(M13) as the number of unique-nodes in 
G would be in O(M6) as per (Lemma 10) 
and the search operation in point 6 above 
is, as seen, the bottle-neck of 2SAT-
FGPRA, requiring in the worst case: 
O((unique-nodes)2*M) operations. 
(Q.E.D.) 
 
III-6 Counting Solutions 
In this section we show that there exists 
an efficient Algorithm which counts 
solutions in the final MSRTs.o produced 
by 2SAT-FGPRA. We give an example 
of its application. Correctness and 
efficiency are shown in Lemmas (13) and 
(14) respectively. 

 

Count2SATSolutions: 

Inputs: The MSRTs.o generated by 2SAT-
FGPRA for a 2CNF Clause Set S 

Outputs: Solution Count (Integer) 
Steps: -  
1- NamedMSRT = Name nodes and edges 

starting from 0 and determine their levels. 
(Algorithm: DetermineLevels below) 

2- Set Solution Count for node n0 = 0, and for 
edges on level 1 to be =1 

3- For all levels i in NamedMSRT 
a. For all edges eij, j is the index of an edge at 

level i:  

65 The least efficient way is chosen to avoid any 
assumptions regarding sort- and search orders of 
Clause Sets in LCS. 
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i. Set Solution Count of eij=Solution Count 
of parent node 

b. For all nodes nik, k is the index of a node at 
level i: 
i. If nik is a TRUE leaf: 

Solution Count of nik=(∑ex*2i-Le)*2N-i, 
where x represents the index of any edge 
going into nik, ex is the solution count of such 
an edge, Le is edge level of x 66, N number 
of variables in S 

ii. Else  
Solution Count of nik=∑ex*2i-Le 

4- Return SolutionCount==∑ Tnd, Tnd is a TRUE 
leaf node 
 

Determining levels of nodes in the 
MSRTs.o in the first step of 
Count2SATSolutions requires 
calculating the longest path from the 
source node to each other node, since a 
node may have several paths and its level 
relates only to the longest one as per 
(Definition 0.3), a problem which is in 
general NP complete [Schrijver 2003]67. 
However: The single-source longest path 
problem for an un-weighted DAG (like 
the MSRTs.o.) has an efficient and even 
linear solution (O(|V|+|E|), V vertices 
and E edges) which uses topological 
ordering. In [Dasgupta 2006] (Ch. 4.7, p. 
130), a single-source shortest-path 
algorithm for DAGs is described. It only 
needs to perform a sequence of updates 
that includes every shortest path as a 
subsequence. The key source of 
efficiency is that in any path of a DAG, 
the vertices appear in increasing 
linearized order. Therefore, it is enough 
to linearize (that is, topologically sort) 
the DAG by depth-first search, and then 
visit the vertices in sorted order, 
updating the edges out of each. The 

 
66 Recall as per (Definition 0.3): Le= LSr+1 if Sr 
is the Source of e.  

67 The longest path problem for a general graph 
is not as easy as the shortest path problem 
because it doesn’t have optimal substructure 
property, i.e., that sub-paths between two nodes 
have themselves to be optimal (enabling the 
greedy strategy).  

scheme doesn’t require edges to be 
positive. In particular, one can find 
longest paths in a DAG by the same 
Algorithm: Just negating all edge 
lengths. The following slightly modified 
Algorithm first creates an ordering for 
the MSRTs.o and then calculates the 
longest distance from the source to each 
node (which is then set to the level of that 
node). Correctness and efficiency of the 
original algorithm is discussed in the 
above reference. 

 

DetermineLevels: 

Inputs: The MSRTs.o generated by 2SAT-  
 FGPRA for a 2CNF Clause Set S 

Outputs: Nodes named and their levels 
calculated 
Steps: -  
1- Scan the MSRTs.o recursively, rename edges 
and nodes and form the topological, lineralized 
order in a depth first traversal manner68.  
2- For all u ∈ V:  

dist(u) = ∞  

dist(s) = 0, s is source node 

3- for each u ∈ V , in the linearized order: 

 dist(u)= Dist(u, MSRTs.o.)  

 Lu=| dist(u)| 

Dist: 

Inputs: u ∈ V, DAG = (V,E) 
Outputs: Integer representing distance from u 
to source of DAG 
Steps: -  
for all nodes v1,v2,..vn ∈V such that (u,vi) ∈E:  

Dist (u,DAG) =  

min{ 

[Dist (v1,DAG) + l(u, v1)], …. 

68 A topological sort order of nodes is basically 
an inequality, which may be formed in the 
following way: For any two nodes n1, n2 children 
of node n: create the inequality n<n1<n2 and add 
it to the final inequality formed recursively 
through depth first traversal. When the inequality 
is extended: Node n1 and its children comes 
before n2 and its children according to 
precedence in already constructed inequalities. 

Algorithm – A3 
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[Dist (vn,DAG) + l(u, vn)] 

} 

l(u,vi,) is the length of the edge from u to vi 
(which is always ‘-1’). 

 
Applying this algorithm to the MSRTs.o 
produced for Clause Set: 
S={{0,1}{0,2}{3,4}} for example yields 
after the first step (Figure 24).  

 
In the third step the following example 
sequence of operations is performed to 
get the longest distance from n0 to n2 
whose absolute value corresponds to the 
level of n2: 

a) The only way to go from n0 to n2 is 
through the only direct predecessor node 
n1. Thus dist(n2) = Dist(n1,DAG) -1 

b) Dist(n1,DAG)=min{Dist(n0,DAG) -
1,Dist(n6,DAG)-1}= min{-1,Dist(n6,DAG)-1} 

c) Dist(n6,DAG)= Dist(n5) -1 
d) Dist(n5,DAG)= Dist(n0) -1=-1 
e) Dist(n6,DAG)=-2 
f) Dist(n1,DAG)= min{-1,-3}=-3 
g) dist(n2) = -4 
h) Ln2=4 

 
(Figure 25) shows all nodes and their 
levels.  

 
 

 
69 The reader may wish to verify this number by 
constructing the truth table and counting the 
assignments satisfying S 

 
 
 
 
 
 
 
 
 
 
 
 
 
After levels of nodes are created in step 
1 of Count2SATSolutions as just seen, 
executing steps 2, 3 through all levels 
gives the following sequen ce of 
operations completing thus the example: 
 

a) Level-0: n0=0 
b) Level-1: e0=1,e5=1,  

n5=e5*2i-Le5=1*21-1=1 
c) Level-2: e6=n5=1, e9=n5=1, 

n6= e6*2i-Le6=1*22-2=1 
d) Level-3: e7=n6=1, e8=n6=1, 

n1=e0*2i-Le0+e7*2i-Le7= 
1*23-1+1*23-3=5 

e) Level-4: e1=n1=5, e2=n1=5,  
n2=(e1*2i-Le1)*2N-i= 
(5*24-4)*25-4=10, n3=e2*24-4=5, 

f) Level-5: e3=n3=5, e4=n3=5, 
n4=(e3*2i-Le3)*2N-i= 
(5*25-5) * 25-5=5  

g) Solution Count=n4+n2=1569 
 

In the next Lemma we show that both 
2SAT-GSPRA+ and 2SAT-FGPRA are 
complete 2SAT-Solver Algorithms. As 
per (Lemma 11-a) 2SAT-FGPRA 
simulates 2SAT-GSPRA+ correctly 
producing the same MSRTs.os. It is thus 
sufficient to prove this property for 
2SAT-GSPRA+. Doing this will enable 
us to focus in the correctness proof of 
Count2SATSolutions on MSRTs.os rather 
than on truth tables  

Algorithm – A4 

Figure 24 

Figure 25 



Abdelwahab, N. 
 

 

 

65 

65 

Lemma 12 (completeness, truth table 
equivalence): 2SAT-GSPRA+ and 
2SAT-FGPRA are complete, truth table 
equivalent Algorithms, i.e.: Let S be a 
2CNF Clause Set, A any Assignment of 
truth values of literals in S, then: 
Applying A on the MSRTs.o produced by 
any of the two Algorithms leads to a 
TRUE leaf iff A satisfies S. 
 

Proof: We are going to show the result 
w.l.o.g. for 2SAT-GSPRA+ only (by 
induction on M, the number of clauses in 
S) 
 

Base: M=170 for the following MSRTs.o: 
 
 
 
 
 
 
 
If we construct the Truth Table T2 
 

a b S 
0 0 1 
0 1 0 
1 0 1 
1 1 1 

 

and use the following propagation rule to 
apply any Assignment A to any node in 
the MSRTs.o: 
"If the input value of the least Literal in 
A is TRUE go left, else go right. Apply 
this rule to all literals in A and nodes in 
the MSRTs.o until you reach a leaf". 
Then, the obtained results are equivalent 
to the ones found in the truth table. 
Check the two marked cases: For 
assignment A="01" the base-node will 
take us right through edge ¬a, then left 
through edge b making the overall value 
FALSE as the one indicated in the truth 
table. For Assignment A="10" we are 

 
70 The case used here (w.l.o.g.) is not the only 
permutation of +ve/-ve literals a,b combined in a 
clause. The reader is encouraged to check other 

taken by edge a directly to the value 
TRUE which is the value of the truth 
table as well.  
 

Induction Hypothesis: For all 
Assignments A of truth values to literals 
in S, SizeS=M: Applying A to the 
MSRTs.o using the above propagation 
rule returns TRUE iff A satisfies S. 
 

Induction Step: Let S=S’+C, 
SizeS=M+1. Remembering that S must 
be l.o.: When C= {x,y} is added to S’ the 
following cases can be distinguished: 
1. x,y are new with respect to S’: 2SAT-

GSPRA+ propagates C until leaves 
are reached (per l.o. condition the new 
variables are > all literals in branches 
of the previous tree). If leaves are +ve 
then the tree representing C will 
substitute them, otherwise FALSE is 
left. Each branch ending with TRUE 
stands per induction hypothesis for 
the fact that - without the newly added 
clause {x,y} - the Set S’ had already a 
satisfiable assignment A and what is 
missing is to satisfy {x,y} only by 
extending A with a partial assignment 
giving x, y truth values so that A 
becomes A’. This is done through the 
extension produced by 2SAT-
GSPRA+ which is a tree T similar to 
the one in the base case. Because we 
need only to check the two new 
variables, it is easily seen (as in the 
base case) that for all TRUE leaves of 
T, reachable using the propagation 
rule: A’ satisfies S’ +{x,y} and vice 
versa, i.e., if a given A’ satisfies 
S’+{x, y} through giving literals x or 
y the value TRUE, then a TRUE leaf 
in T must be reachable via the above 
procedure. When on the other hand a 
branch terminates with FALSE, 
reachable through any assignment A, 
it is guaranteed by induction 

permutations and verify the validity of the 
property for M=1 in a similar way to the one 
shown here. 

Figure 26 

{¬b} 

{a,¬b} 

TRUE 

a ¬a 

b ¬b 

FALSE TRUE 

Truth Table - T2 
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hypothesis also that S’ is not 
satisfiable by A even without taking 
the new clause into consideration. 
Thus, A’ does not satisfy S’+{x,y} as 
well for any truth values given to x 
and/or y.  

2. x exists in S’, while y is new: When C 
is propagated through branches of the 
tree, those terminating with FALSE 
and reachable through assignment A - 
as seen in the previous case - are not 
dependent on the new clause and will 
keep their values and guarantee (per 
induction hypothesis) that S’ is not 
satisfiable. Therefore for that case: 
Any new assignment A’ adding a new 
variables to A is not satisfying 
S’+{x,y} as well. For all those 
branches which terminate with TRUE 
it either might be the case that this 
truth value is independent of the new 
variable y and thus kept as it is per 
induction hypothesis (i.e., A satisfies 
S’+{x,y}), or it is dependent on y and 
the branch (and per induction 
hypothesis its corresponding 
assignment A) is extended with a sub-
tree containing two possibilities of 
partial assignments satisfying the 
single new clause {y}: (y=TRUE) and 
(y=FALSE).Then: If 
A’=A+(y=TRUE) satisfies S’+{x,y}, 
it leads to a TRUE leaf using the 
above procedure and if 
A’=A+(y=FALSE) doesn’t it leads to 
a FALSE leaf (first direction) while if 
S’+{x,y} has to be satisfied and we 
are on a TRUE leaf, 
A’=A+(y=TRUE) can be used to do 
that (other direction). 
Resuming the case of C = {x,y}: 
Either no new nodes are added to the 

 
71 For illustration: Consider the case where {1,2} 
is added to {0,1}{0,2}. The left branch of the tree 
for {0,1}{0,2} which is the leaf TRUE, 
corresponds to the fact that values of 1&2 are not 
relevant for the overall value of the formula 
{0,1}{0,2} when literal 0 is set to TRUE 

tree in all those branches where x 
and/or y already exist and where per 
induction hypothesis the tree is 
already equivalent to the right truth 
table or x and/or y are new in some 
branch. In that case they will be added 
to the +ve leaves accordingly and 
correspond to specifications of truth 
table values which were don't cares 
before71.  

(Q.E.D.) 
 
The following Lemma shows then the 
correctness of Count2SATSolutions. 
 

Lemma 13 (Correctness): Let S be a 
2CNF Clause Set for which 2SAT-
GSPRA+ or 2SAT-FGPRA produce a 
MSRTs.o, AllAssignments the set of all 
satisfibale Assignments of S, then: 
Count2SATSolutions(S)=|AllAssignments|. 
 

Proof: (by induction on N, the number 
of levels of nodes in the MSRTs.o) 
 

Base: N=1: Let S={{a}}, then 
Count2SATSolutions produced in step 1 
the following tree: 

 
 
 
 
 

 
 
After which the following sequence of 
operation steps follow: 

a) Level-0: n0=0 
b) Level-1: e0=e1=1, n1=e0=1 
c) Result =1 

 

Which represents the single assignment 
satisfying S, namely: {(a=TRUE)} 
 

following this particular assignment branch, i.e., 
they are Don't Cares. When {1,2} is added, its 
tree replaces TRUE indicating for what values of 
1 & 2 the same truth table gives truth values 
capturing satisfiability conditions of the newly 
added clause {1,2}. 

Figure 27 

{a} 

TRUE FALSE 
e1 

n0 

n1 e0 
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Induction Hypothesis: For all levels N 
in the MSRTs.o.: All node- and edge 
values calculated via 
Count2SATSolutions for that level represent 
the exact number of solutions possible 
through the respective node or edge.  
 

Induction Step: For level N+1, when 
node- and edge-values of that level are 
calculated: 

1- Edge values are equivalent to 
values of parent nodes which are all 
correct per induction hypothesis. 

 

2- Node values are summations 
of edge values either from the same 
level and in that case (per -1) correct or 
from prior levels. Call an edge from prior 
levels e. The value of e is also correct per 
induction hypothesis, but in need for a 
multiplication factor (step 3-b-ii): 
2(N+1)-Le representing the number of 
exponential possibilities of partial 
assignments lost by e through skipping 
variables. Trivially: Any skipped 
variable is accounted for by the 
multiplication factor of 2. 

3- Values for nodes which are 
TRUE leaves are, with respect to 
whatever happened before them, correct 
(as per -1 and -2), but in need of another 
multiplication factor 2NumberOfVars-(N+1) 
representing the number of exponential 
possibilities of partial assignments lost 
through stopping at that level.  

Therefore, the conclusion is that 
assuming Count2SATSolutions counts 
the solutions correctly for any level N, it 
does the same for level N+1. 
(Q.E.D.) 

This section concludes with an upper 
bound on the number of operations 
needed by Count2SATSolutions.  
 

Lemma 14 (Efficiency): Let S be a 
2CNF Clause Set for which 2SAT-
GSPRA+ or 2SAT-FGPRA produce a 
MSRTs.o: The number of steps taken by 
Count2SATSolutions to count all exact 
solutions of S is in O(M9), M being the 
number of clauses (size) of S. If we relax 
(Lemma 9-c) we get O(M13). 
 

Proof: Remembering that the number of 
nodes/vertices of a MSRTs.o is O(M4) (as 
per Lemma 10) and edges cannot exceed 
thus O(M8) in this DAG, we have the 
following: 
 

 1- Step 1 in Count2SATSolutions, 
i.e., DetermineLevels Algorithm, takes 
an amount of steps linear in the number 
of nodes and edges, i.e., O(M8): 

a- Scanning the MSRTs.o 
in the first step to rename nodes 
and edges and calculate the 
topological order is in O(M8) 

b- Applying the single-
source shortest-path algorithm 
for DAGs is in O(M8) as well 
(c.f. [Dasgupta 2006], Ch. 4.7, p. 
130) 

 

2- In further steps 
Count2SATSolutions loops through all 
levels calculating edge- and node-values 
for each level. In the worst case, this 
would be O(M8*N), where N is the 
number of variables in S. Since N is in 
O(M) (c.f. Lemma 11 Footnote 64), we 
get an upper bound of O(M9). Relaxing 
(Lemma 9-c) gives us as per (Lemma 10) 
O(M6) for the unique node count, which 
makes counting in O(M13) in that case. 
(Q.E.D.) 
 
Now we are ready for the main theorem 
of this paper. 
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III-7 Main Result 
Theorem 1: 
a- Let S be a kCNF Clause Set, k>0, 
kSAT-GSPRA+ and kSAT-FGPRA 
Algorithms which are generalizations of 
2SAT-GSPRA+ and 2SAT-FGPRA 
allowing kCNF Clause Sets as input, but 
agreeing on all other resolution steps, in 
particular those related to: 
 

i- Imposing l.o. conditions via 
CRA+ and using least literals for 
instantiation 

ii- Creating CNs/MSCNs at any 
size-level j only from CNs/MSCNs at 
size-level j-1 

 

and for which we can show that: 
 

1- No N-Splits can exist 
2- No Splits of CN/MSCN nodes 

                of rank k can exist 
3- kSAT-FGPRA simulates 
     kSAT-GSPRA+ correctly 
 

And let Uk denote an upper bound of the 
number of unique nodes generated in a 
MSRTs.o through anyone of kSAT-
GSPRA+ or kSAT-FGPRA while 
resolving S, then:  
Uk<=Uk-1*O(M5) where Uk-1 is 
polynomial in M, M number of clauses 
of S. kSAT-FGPRA is in P, more 
particularly in: O(M)*(Uk)2. This implies 
that P=NP. 
b- Counting the exact number of 
Assignments which satisfy Q, a 2CNF 
Clause Set, (called the #2SAT problem) 
is in P: O(M9), or, if (Lemma 9-c) is 
relaxed: O(M13). Because of this also: 
P=NP.  
 

Proof:  
a- Proof is by induction on k, the 
rank of the kCNF Clause Set S: 
 

Base Cases: k=1: Obviously: If S is 
a 1CNF Clause Set (i.e., formed 
only of unit clauses) we get 
MSRTs.os with O(M) unique nodes 

which are formed via anyone of 
1SAT-GSPRA+ or 1SAT-FGPRA 
through instantiation of uniquely 
occurring literals one by one (after 
converting S to a l.o. 1CNF Clause 
Set). Complexity of 1SAT-FGPRA 
is O(M3) as searching already 
resolved 1CNF Clause Sets 
requires: O((unique-nodes)2*M) 
operations (c.f. Lemma 11). 1SAT-
FGPRA is in P. CNs do not exist. 
Splits don’t exist as well, because 
sub-formulas can only appear in one 
node. 
 

k=2: (Lemma 10) in this work asserts 
that: If S is a 2CNF Clause Set, then even 
relaxing the property that Splits 
(produced by anyone of 2SAT-GSPRA+ 
or 2SAT-FGPRA) in size-levels j>1 of a 
MSRTs.o cannot exist, shown to be true 
in (Lemma 9-c), yields a unique node 
count of only O(M6). Recall that this 
node count was obtained as follows: 
Because rank k=2 CN/MSCNs cannot 
split as per (Lemma 9-a) and no N-Splits 
can occur as per (Lemma 9-b) as well, 
and because CNs/MSCNs at any size-
level j only come from CNs/MSCNs at 
the lower size-level j-1 (Lemma 5-b), 
only O(M2) rank k=1 CN/MSCNs may 
split in the worst case at any one step 
forming each O(M) new nodes (the node 
count of 1CNF MSRTs.os) at any size-
level j. For all steps this makes them 
O(M4) nodes generated via Splits per 
size-level. A size-level j<=M 
accumulates in the worst case also 
whatever may have been generated in the 
lower size-level j-1, which is given by 
(j-1)*O(M4) making the overall node 
count j*O(M4)=O(M5) per size-level. 
For all size-levels we get then the O(M6) 
bound in (Lemma 10). Putting U1=O(M) 
in inequality U2<=U1*O(M5) yields the 
same result. For the complexity of 
2SAT-FGPRA: O(M13)= O(M)*(M6)2 as 
shown in (Lemma 11). 2SAT-FGPRA is 
in P. 
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k=372: In [Abdelwahab 2016-2] it is 
shown that: 
 

1- No Splits of CN/MSCN nodes 
of rank k=3 can exist (Lemma 9) 

2- FGPRA simulates GSPRA+ 
correctly (both of them conceived for 
k=3). 

 

Although it is not explicitly shown 
there that N-Splits don’t exist in 
MSRTs.os produced by anyone of 
FGPRA or GSPRA+, the argument 
seen in (Lemma 9-b) in this work 
can be extended to demonstrate that 
it is indeed the case73. GSPRA+ has 
also the feature of reconstructing 
sub-trees in case a Clause Set is 
found to be not l.o. This is the same 
condition which enabled us to 
deduce (Lemma 5-b) that: 
CNs/MSCNs at any level j can only 
come from CNs/MSCNs at the 
lower level j-1. Although Lemma 
13 in [Abdelwahab 2016-2] shows, 
similar to (Lemma 10) in this work, 
an upper bound of O(M4) of unique 
nodes, because size-j>1 Splits are 
not possible, relaxing this condition 
enables us to use exactly the same 
arguments used for the above k=2 
base case. When we do so: Putting 
U2=O(M6) in U3<= U2*O(M5), 
gives us the unique node count of 
O(M11), and a complexity of 
O(M23)=O(M)*(M11)2 for FGPRA 

which, although larger than the 
O(M9) result of [Abdelwahab 2016-
2] is still in P of course. 
 

Induction Hypothesis74: For any kCNF 
Clause Set S, k>0, kSAT-GSPRA+ and 
kSAT-FGPRA Algorithms satisfying 

 
72 Base cases k=1, k=2 are enough for this 
inductive argument and make the results shown 
here independent of any investigations given in 
[Abdelwahab 2016-2]. It is, nevertheless, 
important to show the link to - and thus the 
continuity of - ideas presented there as well.  

conditions 1, 2 & 3 above: 
Uk<=Uk-1*O(M5), where Uk-1 is a 
polynomial expression in M, kSAT-
FGPRA is efficient, more particularly its 
time complexity is given by: 
O(M)*(Uk)2. 
 

Induction Step: Suppose for a 
(k+1)CNF formula F that we can show 
(k+1)SAT-GSPRA+ has the following 
properties: 
 

1- No N-Splits can exist 
2- No Splits of CN/MSCN nodes 

of rank k+1 can exist 
3- (k+1)SAT-FGPRA simulates 

(k+1)SAT-GSPRA+ correctly. 
 

We do this, for example, by extending 
the arguments used, per induction 
hypothesis, to show the same for kSAT-
FGPRA and kSAT-GSPRA+. Then our 
argument for k+1 may go as follows: 
Because rank k+1 CN/MSCNs cannot 
split and no N-Splits can occur as well, 
and because CNs/MSCNs at any level j 
only come from CNs/MSCNs at the 
lower level j-1, only O(M2) rank k 
CN/MSCNs may split in the worst case 
at any one step forming, per induction 
hypothesis, each at most Uk new nodes at 
any size-level j. For all steps this makes 
Uk*O(M3) nodes generated via Splits per 
level. A level j<=M accumulates in the 
worst case also whatever may be 
generated in the lower level j-1, which is 
as already seen above (j-1)*Uk*O(M3) 
making the overall count j*Uk*O(M3)= 
Uk*O(M4) per level. For all levels we get 
then the inequality Uk+1<=Uk*O(M5). 
The complexity expression follows, as 

73 Recall that this argument only uses the l.o. 
condition imposed on all Clause Sets to arrive at 
the result (c.f. Lemma 9-b). 
74 This induction hypothesis implies P=NP. 
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seen in all base cases, from the bottle-
neck search condition requiring: 
O(M)*(Uk+1)2 operations. Since Uk is, 
per induction hypothesis, a polynomial 
expression and kSAT, for k>2, an NP-
compete problem, it follows that: 
 

P=NP.  
 

Suppose now that we don’t show for F 
that (k+1)SAT-GSPRA+ and (k+1)SAT-
FGPRA Algorithms satisfy conditions 
1,2 & 3. Even then, remembering that 
kSAT is NP-complete for any k>2: There 
is a polynomial time reduction from 
(k+1)SAT to kSAT. We could for 
example convert F to a kCNF formula F’ 
via an equisatisfiable transformation and 
use kSAT-FGPRA to solve it. The 
number of clauses of F’ would be 
bounded above by (k+1)*M, M number 
of clauses of F, because such 
transformations generate always at most 
(k+1) clauses for any clause C∈F. As per 
induction hypothesis: kSAT-FGPRA’s 
time complexity is given by: 
 

O(M)*(Uk)2, where Uk-1 is a polynomial 
expression of degree, say, d>0 in M and 
Uk<=Uk-1*O(M5). Substituting (k+1)*M 
for M in this inequality gives: 
 

Uk<=(k+1)d+1*Uk-1*O(M5) and does not 
disturb the polynomial behavior of 
kSAT-FGPRA as expected. Since 
Uk+1=Uk, this trivially means also that: 
Uk+1<=Uk*O(M5) which was to be 
shown. F’ can thus be solved by a 
polynomial time Algorithm producing a 
polynomial number of unique nodes, i.e.,  
 

P=NP. 
 

No surprise since P=NP was already 
embedded in the strong induction 
hypothesis. 
 

b- The same main result follows also 
directly from the following observations: 
 

1- Using 2SAT-FGPRA to 
produce a MSRTs.o for Q is, as per 
(Lemma 11) in this work, in O(M9) or in 
O(M13) if we relax (Lemma 9-c). 

 

2- Counting the exact number of 
solutions using Count2SATSolutions is, 
for the same reason, also either in O(M9) 
or in O(M13) as per (Lemma 14). 

 

3- This means that any Algorithm 
solving #2SAT using 2SAT-FGPRA 
first to construct the MSRTs.o and then 
Count2SATSolutions needs in the worst 
case only O(M9) or O(M13) primitive 
operations. #2SAT is known to be #P-
complete (c.f. [Valiant 1979]), therefore: 

 

P=NP 
 

(Q.E.D.) 
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IV DISCUSSION OF RESULTS 
This work shows that small FBDDs for 
base cases of kSAT: k=1, k=2 are 
achievable via SPR-like Algorithms 
which neither possess N- nor Big-Splits. 
Moreover: The nature of those 
Algorithms permits a uniform 
expression of result parameters of 2SAT-
GSPRA+/2SAT-FGPRA versions in 
terms of 1SAT-GSPRA+/1SAT-FGPRA 
versions for both: The upper bound of 
the number of unique nodes in generated 
FBDDs and the worst case time 
complexity. This is sufficient to prove 
P=NP in the following two different 
ways: 

a- FBDDs of polynomial sizes 
for arbitrary 2CNF formulas enable the 
definition of efficient model counting 
solutions resulting in solving #2SAT in a 
polynomial number of steps (Theorem 1-
b). 

b- Uniformly linking efficient 
1SAT- and 2SAT-versions of SPR-
Algorithms, while proving small, upper 
bounds on unique node counts, enables 
formulating the strongest possible 
induction hypothesis, namely: That 
kSAT-FGPRA is a polynomial time 
Algorithm producing polynomial 
number of unique nodes in a FBDD 
(which means: P=NP). This in its turn 
facilitates using kSAT-FGPRA to solve 
(k+1)CNF formulas via equisatisfiable 
translations in the induction step, 
completing thus a third way of showing 
that P=NP in (Theorem1-a)75. 
 

The core work of demonstrating that 
FBDDs for a 2CNF formula F can 
always be small strongly relates to the 
concept of a Split, which expresses the 
fact, that some sub-formulas of F may be 
repeatedly processed during resolution. 
Fatal cases of processing sub-formulas 

 
75 Counting also the solution of 3SAT presented 
in [Abdelwahab 2016-2]. 

of the same difficulty as the original 
problem from scratch again and again 
(N- and Big-Splits) are shown to be 
avoided using imposed l.o. conditions. 
The rest of existing rank 1- and/or size 1- 
Splits facilitate a uniform formulation of 
the relation between k- and (k-1)SAT-
SPR-Algorithms when some lemmas are 
relaxed. 
 

Splits are not mere accidents which don’t 
have a rational reason. They reflect 
consequences of tangible pattern-
properties of variables found in nature 
and enforced on Clause Sets to serve, in 
addition to usual container-properties, in 
the definition of SPR-like procedures. 
 

Finally: Discussing the consequences of 
our findings is beyond the scope of this 
work. 
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VI APPENDICES 
VI-A Formal terms, their definitions and usage 
 

Term/(Acronym,Link) Definition Formally Used in Comment 

Variable, Literal, Clause, 
2CNF Formula/Clause Set 

0.1 Standard Basic --- 

Truth Assignment, Partial 
Assignment, Restricted 
Assignment 

0.1 f:Var =>{0,1}. When f is partial it 
is called Partial Assignment, 
when it is restricted to only one 
variable it is called Restricted 
Assignment 

Basic,  
(Lemma 2) 

--- 

2SAT Decision Problem 0.2 Standard Basic --- 

Graphs, Vertices/Nodes, 
Edges, adjacent vertex, 
Source, Target , reachable, 
Child, Parent, Base Node 
(BN), Path, Branch, 
acyclic, Length of 
Path/Branch, Directed 
Acyclic Graph (DAG) 

0.3 Standard Basic --- 

Source Path of node n (SPn) 0.3 SPn:List<Edges> Counting 
Models 

Used for determining 
node levels in the 
(Count2SATSolutions) 
procedure (Section III-6) 

Level of node n (Ln) in a 
DAG 

0.3 Ln=Max(length(SPn
1)..length(SPn

k)) 
where any SPni is a Source Path of 
n.  
 

Counting 
Models 

Used in the 
(Count2SATSolutions) 
procedure (Section III-6) 

Level of edge e (Le) in a 
DAG 

0.3 Le=LSR+1, where SR is Source of 
e 

Counting 
Models 

Used in the 
(Count2SATSolutions) 
procedure (Section III-6) 

Topological Ordering of a 
DAG (TO) 

0.3 ∀e:Edge, e=(vi , vj ), vi,vjÎV: i< j Counting 
Models 

Used in the 
(Count2SATSolutions) 
procedure (Section III-6) 

-Sequential Resolution 
DAG (SR-DAG) 
- 2CNF Clause Set of a 
node (2CNFnode), 
- Base Clause Set (BS),  
- (TRUE-DAG) 
- (FALSE-DAG) 

0.3 -SR-DAG: ∀n:NodeÎd:DAG: 
∃S, S is 2CNF Clause Set, S is the 
Clause Set of n (2CNFn). BS is 
2CNFBN. 
- TRUE-DAG: SR-DAG with one 
node only labeled TRUE. 
FALSE-DAG: similar. 
 

Basic --- 

-(rankC)  
-(rankNode) 
-(rank2CNF) 

0.3 - rankC: (clause) => N 
- rankS=rankNode= 
Max(rankC(C1)..rankC(Cm)),  
C1-CmÎS, S is 2CNFNode 

Basic - rankC: Number of literals 
in clause C 

-Size of a node n (Sizen),  
-Size of a 2CNF Clause Set 
S (SizeS) 

0.3 Standard Basic - Sizen: Number of clauses 
in the 2CNFn 
- SizeS: Number of clauses 
in a 2CNF Clause Set S 

-(Top-Part) of a SR-DAG  0.3 Topd:SR-DAG={n:NodeÎd | ∃S, S is 
2CNFn, SizeS=M or SizeS=M-1, 
SizeBNÎd=M} 

Basic --- 
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-(LeftDAG) 
- (RightDAG) 
- (SubTree) 

0.3 LeftDAG: (n:Node)=>SR-DAG 
rightDAG: (n:Node)=>SR-DAG 
SubTree: (n:Node)=>SR-DAG  

 

Basic - Functions returning SR-
DAGs of left- and right 
Child nodes of a node n 
- SubTree: Is a Function 
which, given a node n of a 
SR-DAG, returns the 
portion of the SR-DAG 
starting with n. 

Literals in a 2CNF Clause 
Set S (LIT) 

0.4 LIT: (S) => Var  
 

Basic, 
(Lemma 1) 
(Lemma 2) 

Function returning all 
literals in S 

Left literals of Literal x 
(LEFT) 

0.4 LEFT:(x:LiteralÎC,C:ClauseÎS) 
=> Var 
 
 

Basic - LEFT: Function 
returning literals 
occurring to the left of a 
Literal x in the string 
representation of S 

(SortOrder) 0.4 SortOrder:(C:ClauseÎS, S:2CNF 
Clause Set)=>int 

 

Basic, 
(Lemma 1) 

- Function mapping clause 
CÎ S and 2CNF Clause 
Set S to an integer number 
representing the position 
of C within S 

-Head-Literal, Tail-Literal 
(HL,TL)  
-Connectivity of a Literal x 
in a 2CNF Clause Set S 
(Connectx,S) 

0.4 HL={L:Literal | CÎ S, S is 2CNF 
Clause Set, C={L, t}} 
TL={L:Literl | CÎ S, S is 2CNF 
Clause Set, C={t, L}}  
Connectivity:(x:LiteralÎ 
S,S)=>int 
 

Basic -First Literal in any clause 
is called Head-, last one is 
called Tail-Literal 
- Connectivity: Is a 
Function mapping a 
Literal x in a Clause Set S 
to the number of clauses 
of S in which the Literal x 
appears. It is used in CRA 

-Permutations of CÎS, S is 
2CNF Clause Set (permC).  
-Resolution Complexity 
Coefficient (RCC) 
- Alignment 2CNF Clause 
Set of S (ACS). 

0.4, 13 - permC={CÎ S | C={a, b} or 
C={b, a} or C={a} or C={b}, a, 
b:LiteralÎC} 

-RCCk-SAT=kPk+kPk-1+kPk-2+…kP1 
i.e., for 2SAT 
RCC2-SAT= 2P2 + 2P1 = 4 
- ACS=∪permCiÎS for all CiÎS 

(Lemma 7) 
(Lemma 10) 

- permC is the Set of all 
clauses which use 
permutations of Literals in 
CÎ S 
- ACS is the Set of all 
unique clauses and their 
derivations used for the 
alignment of all nodes of a 
MSRTs.o 

-Instantiations of Literals,  
- (Derivation) of CÎ S and 
S is 2CNF Clause Set,  
-(Linear Derivation) of CÎ 
S,  
-(Empty Derivation) of CÎ 
S, 
-(Positive Derivation) of 
CÎ S, 
-(Negative Derivation) of 
CÎ S, 
-(Every Derivation) of CÎ 
S, 
-(InstSimple) 
- InstSimpleC, 
- Satisfiability of S 

0.4 -Inst:(A:Assignment,S) => 2CNF 
Clause Set  
-
InstSimple=Inst(A:RestrictedAss
ignment,S) => 2CNF Clause Set. 
-InstSimpleC: 
(A:RestrictedAssignment,C:Clau
se) => 2CNF Clause Set 
a-
InstSimpleC:(A:Assignment,C:Cl
ause) => Clause  
b- Derivation of a clause C 
isÎ{C’:Clause | C’Î permC}.  
c- Linear Derivation of C is Î 
{C’:Clause| C’={a,b} or C’={b} , 
a, b:LiteralÎC, a<b}  
d- Empty Derivation of C is Î 
{C’:Clause| C’={TRUE} or 

Basic,  
(Lemma 2) 

- Instantiations are 
functions using Total or 
Partial Truth Assignments 
to create new Clause Sets. 
They substitute literals in 
Clause Sets by Boolean 
truth values given in the 
Assignment. 
- The clause resulting 
from applying an 
instantiation on any CÎ S 
is called a derivation of C.  
- It is called linear 
Derivation if consecutive 
instantiations respect the 
linear order of literals in 
C.  
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{FALSE} or {TRUE,FALSE} or 
{FALSE,TRUE} or 
{FALSE,FALSE} or 
{TRUE,TRUE}}  
e- Positive Derivation of C is Î 
{C’:Clause| TRUE ÎC’} 
f-Negative Derivation of C is Î 
{C’:Clause| 
C’={FALSE,FALSE} or 
C’={FALSE}} 
g- Every Derivation of C is 
Î{C’:Clause| C’Î permC or C’Î 
Empty Derivation of C} 
 
 
 
 

- If consecutive 
instantiations result in a 
clause containing only 
truth values and no 
literals, the derivation is 
called: Empty Derivation 
- A Derivation containing 
one TRUE value is called 
Positive Derivation. 
- A Derivation containing 
only FALSE values is 
called Negative 
Derivation. 
- Derivations can be 
directly evaluated to 
TRUE or FALSE. 
Evaluation is embedded in 
the Inst function. If this 
evaluation results in the 
TRUE, S is said to be 
satisfiable by A. 
- When Partial 
Assignments used by Inst 
are related to only one 
variable, Inst is called 
InstSimple. InstSimple 
can be restricted to only 
one clause and becomes 
InstSimpleC 
- S is said to be satisfiable 
by A: If Inst(A,S) results 
in the overall value TRUE  
C.f.: (Lemma 2) 

- (Convert) a clause to SR-
DAG,  
-(FIRST) occurrence of a 
Literal in a 2CNF Clause 
Set S,  
-(SELECT) a Literal from a 
2CNF Clause Set S 

0.4 - Convert(C:ClauseÎS)=>SR-
DAG 
- FIRST/FIRSTC(L:Literal, 
S)=>int 
- SELECT(S)=>int 
 

Basic, 
(Lemma 1) 

- Convert is a function 
mapping a 2CNF Clause 
C={a1,b11} to a SR-DAG 
by substituting in two 
subsequent simple 
instantiation steps first a1 
with TRUE and FALSE 
creating Clause Sets and 
placing them in the 
respective nodes of the 
SR-DAG and then doing 
the same for b11 (Figure 
2). 
- FIRST: is a function 
mapping a Literal and a 
Clause Set S to the integer 
position (starting from the 
left) of the Literal in the 
string representation of S. 
FIRSTC is the version of 
this function which 
returns the index of the 
clause in which L appears 
for the first time, c.f.: 
(Lemma 1-c) 
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- SELECT: Is a Function 
selecting a Literal from 
LIT(S). Although generic, 
it is only used in 
Algorithms of this work to 
select the least Literal 
according to LLR 

-Linearly Ordered- (l.o.) ,  
-Linearly Ordered, but 
unsorted (l.o.u.),  
-Almost Arbitrary (a.a.) 
Clause Sets 

1 For a 2CNF formula S, S is called 
l.o. if the following Conditions 
hold: 
 
a)		∀ai,bij∈	Ci,j: ai<bij 
b)		∀i,j,x,y: if i<j then 

      L2∈Cj,x >= L1∈Ci,y, 

      where L2 is HL of Cj,x 

      and L1 HL of Ci,y, 

      SortOrder(Cj,x,S)> 

      SortOrder(Ci,y,S) 
c)		∀xÎLIT(S),∀Ci,jÎS: 
     if x ∉ LEFT(x,Ci,j) then 
						∀yÎ LEFT(x,Ci,j): x>y 
d)  S is a Set 

 
If S fulfills Conditions a), c), d), 
but not b) it is l.o.u. If S fulfills 
Conditions a), d) only it is a.a.  
 

All 
Lemmas 

a) Literal names/indices 
are sorted in 
ascending order 
within clauses. 

b) S is sorted by ai 
& bij in 
ascending order 
taking into 
consideration 
negation signs.  

c) all new 
Names/Indices of 
literals occurring for 
the first time in a 
clause C of S are 
strictly larger than all 
the Literal 
Names/Indices 
occurring before 
them in S 

d) Clauses appear only 
once in S. 

 
- Blocks (Ba),  
- Block-Literal,  
- Block-Sequence (Bseq),  
- Symmetric Block (SB),  
- Dissymmetric Block 
(DB),  
-(DB Sorting Condition) 

1 - Bax={{ax,bx1}{ax,bx2} ..  
{ax,bxi,}} is a 2CNF Clause Set. 
- ax is Block-Literal 
- S={Ba…Bn} is Block-Sequence 
- A Block Bx is called SB if ∃A: 
Assignment such that:  
instSimple(A:{X=TRUE},Bx}= 
instSimple(A:{X =FALSE}, Bx} 
-It is called DB if ∃A:Assignment 
such that: 
instSimple(A:{X=TRUE},Bx}=S1, 
instSimple(A:{X =FALSE}, Bx}=S2 
and either S1 ⊆ S2 or S2⊆ S1.  
 
 
 

Basic,  
(Lemma 8) 
(Lemma 9) 

- Blocks are referred to by 
the name of the leading 
Literal (in this case S is 
called ax-Block).  
- Clauses having ax as 
leading Literal are said to 
belong to the ax-Block. 
- A Block Bx is called SB 
if -ve and/or +ve 
instantiations of Block 
Literal x result in the same 
Clause Set.  
- A Block Bx is called DB 
if -ve and/or +ve 
instantiations of Block 
Literal x result in Sets S1, 
S2 and one of them is 
included in the other. 
- DB Sorting Condition: If 
a DB Bx is sorted such that 
all clauses containing –ve 
instances of Literal x are 
placed before all those 
containing +ve instances 
or vice versa 

-(2SAT-GSPRA 
Procedure),  
- (Align Procedure),  

2 -2SAT-GSPRA  Procedure (c.f. 
Section III.1) 

(Lemma 5) - A node in a SR-DAG is 
symbolized by [x] if the 
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-Name Literal (NL), - 
(Edge Literal)  
- (Branch Literal) 
- Least Literal Rule of a 
2CNF Clause Set S (LLRS),  
-Variable Ordering (∏p),  
-CanonicalOrdering (∏cp) 
 

-Align Procedure (c.f. Section 
III.1) 
- NL=LLRS={i:Literal |∃BS: 
2CNF Clause Set, ∃n:NodeÎSR-
DAGBS, S is 2CNFn, 
SELECT(S)=i and ∀xÎLIT(S): 
i<x} 
-∏p=<i,j,k,…> where i,j,k,… 
integers such that i<j<k<…. 
 
 

lead clause in its Clause 
Set is headed by a least-
Literal x. Moreover: x is 
called the NL  of this 
Clause Set/node. 
- Edges going out of a SR-
DAG node [x] are marked 
with x and represent 
instantiations of the NL x 
of the Clause Set of that 
node (this fact is called 
LLR).  
-Literals on edges of 
branches leading 
indirectly to a node n are 
called branch-literals of n 
while literals on edges 
connected directly to n are 
called edge-literals of n. 
Every edge-Literal is a 
branch-Literal, but not 
vice versa. 
- A variable ordering of a 
problem p (∏p) expressed 
as a 2CNF Clause Set S 
and resolved by any 
resolution procedure PR is 
a list of integers <i,j,k,…> 
representing indices of 
Literal/variable names 
indicating priorities of 
instantiations of 
literals/variables of S used 
in PR. If ∏p represents the 
canonical, truth table 
ordering of variables the 
following notation is used: 
∏cp.  

-(Sequentially ordered SR-
DAG) 
- Strongly ordered SR-
DAG (s.o.) 
- Loosely ordered SR-DAG 
(lo.o.) 

3 - Sequentially Ordered SR-
DAG:  
∀S, n	∈SR-DAG, S is 2CNFn: 
S={Ci,Cj,…CM} for some 
i<j<….<M’, M’<=M. M number 
of clauses in S, Cx’s are clauses or 
derivations of clauses enumerated 
from left to right in S 
-	Strongly Ordered SR-DAG: ∀S, 
0	 ∈SR-DAG, S is 2CNFn: S is 
linearly ordered (l.o.) 
- Loosely Ordered SR-DAG: ∀S, 
0	 ∈SR-DAG, S is 2CNFn: S is 
either l.o. or l.o.u. 

All 
Lemmas 

- Strongly ordered Sets are 
always linearly ordered, 
the inverse is not always 
the case, i.e., some l.o. 
Sets may have Clause Sets 
in their SR-DAGs which 
are not l.o.  
- If a Set S has a BS which 
is l.o. while some other 
Clause Sets in its 
generated SR-DAG are 
l.o.u., then S as well as its 
SR-DAG is called loosely 
ordered 

- Common Node (CN),  
- Head-CN (HCN),  
- Tail-CN (TCN),  

4 -[q]∈SR-DAG is CN if 
∃n1,n2	∈SR-DAG such that: [q] 
adjacent to both n1 and n2 

(Lemma 8) 
(Lemma 9) 

A CN [q] is supported in a 
step l>k if its Clause Set S 
gets clauses appended to 

Figure 9 
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- Trivial-CN (tCN),  
- (Supported CN)  
- Supporting Parent,  
-(Direct Parent),  
-(Direct Child),  
-Double-Sided CN from 
the perspective of x 
(DSCNx),  
-Single-Sided CN from the 
perspective of x (SSCNx),  
-(Distinguished Literal), 
-(Non-Distinguished 
Literal),  
-CN-Augmenting Literal 
(CNAL) 

- A CN [q]	∈SR-DAG is HCN if 
its Clause Set has a leading/head 
clause C∈S, NL q is HL of C 

- A CN [q]	∈SR-DAG is TCN if 
its Clause Set has a leading/head 
clause C’ which is a derivation of 
a clause C∈	S, NL q is TL of C 
- [q]	∈SR-DAG is tCN if ∃n	∈
	SR-DAG, S is 2CNFn , S is SB,	
Child([q],n)=TRUE 

-A CN [q]	∈SR-DAG with 
S=2CNF[q], S=Bseq produced in 
steps <=k, is said to be supported 
in a step l>k if ∃C:Clause, C∈Bx 
such that:  
S=S ∪ C in step l>k while in steps 
<=k: ∃0	 ∈SR-DAG, 
Parent(n,[q]), S’ is 2CNFn, S’ is 
Bseq and Bx ∉ S’ 
- CN [q]	∈SR-DAGBS is called 
DSCNx if ∃n1,n2:Node∈SR-
DAGBS, x,y:Literal, S1 2CNFn1, S2 
2CNFn2 such that: LLRS1=x, 
LLRS2=y, x=¬y, 
Parent(n1,[q])=TRUE, 

Parent(n2,[q])=TRUE. 
- CN [q]	∈SR-DAGBS is called 
SSCNx if ∃n1,n2:Node∈SR-
DAGBS, x,y:Literal, S1 2CNFn1, 
S2 2CNFn2 such that: 
LLRS1=LLRS2=x, 
Parent(n1,[q])=TRUE, 

Parent(n2,[q])=TRUE. 
 - CNAL={L:Literal∈C:Clause, 
[q] is CN∈SR-DAGBS formed in 
steps<=k, L is non-distinguished 
for [q] | Size[q] is augmented in 
steps>k through invocations: 
InstSimpleC ({L=TRUE},C) or 
InstSimpleC ({L=FALSE},C)} 

its head in step l which 
don’t belong to any Block 
instantiated in steps <=k 
by one or more of its 
parents. A parent-set of 
such a CN is called 
supporting. 
If a head-clause of a CN is 
also a clause of one of the 
Clause Sets of its parents, 
then this parent is called 
direct parent of the CN. 
The CN itself is called 
direct child of this parent 
A CN [q] formed within a 
Block Bx through +ve as 
well as -ve edge- or 
branch-literals x is 
DSCNx. Such a x is called 
in this case distinguished 
Literal for [q].  
A CN [q] formed within a 
Block Bx through only +ve 
or only -ve edge- or 
branch-literals x is SSCNx. 
x is called in this case non-
distinguished Literal for 
[q].  
If for a CN [q] there is no 
distinguished Literal x 
such that the CN is 
DSCNx, then [q] is SSCN.  
If a non-distinguished 
Literal x for a CN [q] 
formed in steps <=k is 
used to augment the size 
of [q] in step l>k, i.e., x is 
instantiated in a clause 
added to the clauses of [q] 
in l, then x is CNAL for 
[q]. 

- Dependency Graph (DG),  
- Leaves of Dependency 
Graphs,  
- Free Binary Decision 
Diagram (FBDD) 

5 - DG is a DAG <V,E> where V is 
the Set of all NLs, E the Set of 
ordered pairs <v1,v2> , v1,v2∈ @ 

All 
Lemmas 

- DGs can be deduced 
from SR-DAGs in a 
canonical way and used as 
practical alternatives for 
truth tables. They are 
equivalent to FBDDs. 
- DGs (FBDDs) have the 
following properties 
a- Each NL can appear 
only once in a branch. 
b- Branches can have 
different Literal/variable 
orderings ∏p depending 
on the sub-problem p they 
belong to c- A leaf of a DG 
is a node whose value is 
TRUE or FALSE. 

Figure 9 

Figure 10 
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- (Splits),  
- (N-Splits)  
- (CN-Splits)  
- (Split Node)  
- Big-Splits (BigSps) 
 

6 - Split: A SR-DAG is said to 
possess a Split if ∃S’:2CNF 
Clause Set such that: For some 
n1,n2:Node∈SR-DAGBS, S1 is 
2CNFn1, S2 is 2CNFn2, n1≠n2: S’⊆ 
S1, S’⊆ S2, ∄n: 
Child(n,n1)=Child(n,n2)=TRUE  
- Splits are called CN-Splits, if, in 
addition to the formal condition 
above: ∃q:Node, ∃C:Clause: S’ is 
2CNF[q] , [q] is CN/MSCN in step 
k and C is resolved in steps >k 
such that: C1⊆S1, C2⊆S2, 
C1,C2∉S’, C1,C2∈Every 
Derivation of C, C1≠C2.  
- If a Split is not a CN-Split, it is 
called a N-Split. 
- BigSps: Are Splits of a CN [q] 
where rank[q]=rankBN 

(Lemma 9) Split: There exists a sub-
Set of clauses common 
between two or more 
Clause Sets of different 
nodes which don’t possess 
common sub-trees. 
Splits are formed when 
either node n containing 
Clause Set S constructed 
in step k is duplicated one 
or more times in steps >k 
together with all or parts 
of its nodes or sub-trees, 
the cause of this 
duplication being that S is 
resolved with a clause 
whose least-Literal was 
new in that step and had an 
index < all or any indices 
of head-literals in S (N-
Split) or a CN [q] 
constructed in step k 
and/or any of its nodes or 
sub-trees are duplicated 
with variations one or 
more times in steps >k 
(CN-Split).  
If [q] is a CN of a SR-
DAG which is split in step 
k, then the new node 
[q]'=[q]+C' formed in k, 
because C∈BS is resolved 
(C' is a Derivation of C) is 
called: Split-Node. 
BigSps occur when a CN 
is split which has the same 
rank as the rank of the 
base node. They are 
causes of exponential 
behavior of 2SAT-
GSPRA. 

- Clauses Renaming 
Algorithm (CRA),  
-(Connection Matrix),  
- Renaming Precedence 
Condition (RPC) 
 

7 - CRA c.f. Definition 7 
 
 
 
 
 
 
 
 

 

(Lemma 1) 
(Lemma 3) 
(Lemma 6) 
(Lemma 8) 

Connection Matrix: Rows 
are Literal Names/Indices, 
Columns are clauses, 
Entries are TRUE/FALSE 
according to whether the 
Literal occurs in the given 
clause or not 
RPC: Arrange literals in 
ascending order within 
any Ci ∈ C such that 
literals which were not 
renamed before and 
appear more often in other 
clauses become HLs 
before those which appear 
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less often or which only 
appear in Ci. 

- (Mapping), 
- (Image), 
- Variable Space/Space 
(VS),  
- 2CNF Clause Set in 
space-i (Sspace-i), 
- Node in space-i 
(Nodespace-i) 

8.1 - Mapping: (N) => N 
- VS=Mapping*(N) 

(Lemma 1) 
(Lemma 9) 

- Mapping is a bijective 
function giving a Literal 
Name/Index in a 2CNF 
Clause Set S its new 
Name/Index after a 
renaming operation using 
CRA.  
- The new Name/Index is 
also called: Image of the 
Literal. New names of 
literals forming single 
clauses or Clause Sets are 
called Images of clauses 
or Clause Sets.  
– A VS is a subsequent 
application of mappings 
starting from the Base 
Clause Set of a 2CNF 
formula.  
- To express that a Clause 
Set is formed in a certain 
space-i the notation: 
S={{..}…{..}}space-i or just 
Sspace-i is used.  
- To express that a node is 
formed in a certain space-
i the notation: Node space-i 
is used.  

- (Apply) 
- (InvApply) 

8.2 - Apply: (M:Mapping, S:2CNF 
Clause Set) => 2CNF Clause Set 
 

All 
Lemmas 

- Apply is a function 
which replaces 
occurrences of literals in a 
2CNF Clause Set S with 
their Names/Indices given 
by the mapping M.  
- InvApply is similarly 
defined, but applies to S: 
M-1 instead of M. 

- Equivalence via Mapping 
(S1 ⇔M S2),  
- (Syntactic Image) 

8.3 - S1 ⇔M S2: if ∃M1, M2:Mapping 
such that: 
Apply(M1,S1)=Apply(M2,S2)=S’. 
S’ is called syntactic image of 
both S1, S2. 
 

(Lemma 2) - Equivalent via Mapping: 
Are 2CNF Clause Sets 
which reside in MSCNs, 
i.e., CNs which are 
formed between different 
Variable Spaces  

- trivial Mapping 
(tMapping),  
- (Stable Set of literals), 
 - (Stable Clause) 
- Stable Clause Set 

8.4 - tMapping: ∃M:Mapping, S a 
2CNF Clause Set, ∀xÎLIT(S): 
M(x)=x 
- Sub is a Stable Set of literals: If 
∃M:Mapping produced in step k 
such that: ∀xÎSub, Sub⊆Lit(S): 
M(x)=x in any step >k  
- Stable Clause: ∀x:LiteralÎCi, 
xÎSub⊆Lit(S), Sub is a Stable Set 
of literals 

(Lemma 2) 
(Lemma 3) 

- tMapping: Each Literal 
index is given itself after a 
renaming operation using 
CRA. 
-Stable Set of literals: a 
subset of Literal indices is 
mapped to itself via CRA 
in step k and remains 
always mapped to itself 
for any step>k,  
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- Stable Clause Set: 
∀CiÎS:Clause Set, Ci is stable, 
then: S is a Stable Clause Set.  
 

- Mixed-Space Node 
(MSN),  
- Single-Space Nodes 
(SSN) 

8.5 - MSN: S1, S2 are 2CNF Clause 
Sets of nodes n1,n2ÎSR-DAG, 
respectively, and S1≠S2, but 
n1=n2=n. 

(Lemma 9) - MSNs possess two 
syntactically non-
equivalent Clause Sets, 
because of the application 
of CRA+ 
- SSNs are nodes in which 
CRA+ was not applied 

- Mixed-Space Tree 
(MST),  
- Single-Space Tree (SST) 
- Literal in space-i  
(Lspace-i) 
- Literal x proceeds Literal 
y in a Clause Set S of space-
i  
((x | y)space-i)  
- Mapping in space-i 
(Mspace-i) 
 
 

8.6 - (x | y)space-i: If ∃space-i:VS such 
that:  
Sspace-i is a 2CNF Clause Set 
where:  
FIRST(x,Sspace-i)<FIRST(y,Sspace-i) 

(Lemma 1) 
(Lemma 9) 

- MST: SR-DAG with 
MSN nodes 
- SST: SR-DAG with only 
SSNs.  
– Lspace-i refers to the name 
of Literal L given by a 
mapping M in space-i.  
- x proceeds y in space-i: 
Within space-i the first 
occurrence of Literal x in a 
Clause Set S comes before 
the first occurrence of 
Literal y. When space-i is 
known, its subscript is 
omitted. Since S is always 
apparent from the context 
a reference to it is omitted 
as well. 
- Mspace-i: Refers to the 
mapping created by a 
CRA operation within 
space-i.  

- Monotone Mapping in 
space-i (mMspace-i) 

8.7 - A mapping is monotone when 
∀x,y∈LIT(Sspace-i): if (x | y) space-i 
then also Mspace-i (x)<Mspace-i (y) 

(Lemma 1) 
(Lemma 9) 

-This property is intrinsic 
in all GSPRA Algorithms 

- Clauses Renaming and 
Ordering Algorithm 
(CRA+),  
- (CRA-Form) 
- Sequentially-Ordered, 
Multi-Space Resolution 
Tree/SR-DAG (MSRTs.o.),  
- Multiple Space Block 
(MSB)  

9, 10 - CRA+: Pseudo-Code Definition 
9, CRA+(S) is called the CRA-
Form of S. 
- MSRTs.o.: Is a SR-DAG such 
that:  
∀nspace-i:NodeÎSR-DAG: 
(2CNFn)space-i is l.o. 
- MSB = {(Bx1)space-i:2CNF Clause 
Set | 
∃space-j, (Bx2)space-j:2CNF Clause 
Set, 
M: Mapping, where:  
((Bx1)space-i ⇔M (Bx2)space-j ) Or 
((B’x1)space-i ⇔M (B’x2)space-j)), B’x1, 
B’x2 are Derivations of Bx1, Bx2, in 
respective Spaces } 

(Lemma 2) 
(Lemma 3) 
(Lemma 8) 
(Lemma 9) 
(Lemma 10) 

 -MSRTs.o is a MST whose 
Clause Sets are all l.o.  
- MSB: A block Bx whose 
Clause Set or derivations 
thereof (all or part of 
them) belong to more than 
one VS (Notation also: 
BxS1,S2,..,S1,S2,.. Variable 
Spaces). 
- Similar to Single Space 
Blocks: An MSB may be 
symmetric or 
dissymmetric.  

-Multi-spaced Symmetric 
Block (MSSB) 

10.1 - MSSB = {  
(Bx1)space-i:2CNF Clause Set | 
∃space-j, (Bx2)space-j:2CNF Clause 
Set, 
M: Mapping, where 

(Lemma 8) 
(Lemma 9) 

- MSSB is the structure in 
which a tMSCN can occur 
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((Bx1)space-i ⇔M (Bx2)space-j 

Or  
(B’x1)space-i ⇔M (B’x2)space-j) 
B’x1, B’x2 are Derivations of Bx1, 
Bx2, in respective Spaces	 and 
∃Aspace-i, Aspace-j: Assignment such 
that: 	
instSimple(Aspace-i:{X1=TRUE}, 
(Bx1)space-i) ⇔M  
instSimple(Aspace-j:{X2=FALSE}, 
(Bx2)space-j) 
}	 
 
	 
 
 

- Multiple Space Common 
Node (MSCN) 
- Target Space (TS) 

10.2 - MSCN:- if ∃n1,n2	∈ MSRTs.o not 
necessarily of the same space: [q] 
adjacent to both n1 and n2 

(Lemma 8) 
(Lemma 9) 
(Lemma 10) 

- Target Space: The VS of 
a node which is target of 
two or more MSNs in a 
MSRTs.o. 

- Double-Sided MSCN 

with respect to Literal z 
(DS-MSCNz),  
- Single-Sided MSCN with 
respect to Literal z (SS-
MSCNz),  
- trivial MSCN (tMSCN) 

11 - [q]space-i is DS-MSCNz, if 
∃n1,n2	∈ MSRTs.o of 2CNF Clause 
Set S, ∃xspace-j	, yspace-k:Literal, 
∃M1,M2: Mapping, such that: 
[q]space-i is adjacent to both n1 and 
n2 and  
zspace-i =M1(xspace-j), zspace-i 
=M2(yspace-k), where yspace-k has the 
opposite sign of xspace-j 

- [q]space-i is SS-MSCNz, if 
∃n1,n2	∈ MSRTs.o of 2CNF Clause 
Set S, ∃xspace-j	, yspace-k, 
∃M1,M2:Mapping, such that: 
[q]space-i is adjacent to both n1 and 
n2 and 
zspace-i =M1(xspace-j), zspace-i 
=M2(yspace-k), where yspace-k has the 
same sign as xspace-j, 
- [q] is tMSCN, if ∃n	∈	MSRTs.o 
whose Clause Set is a MSSB, 
Child[q],n)=TRUE 

(Lemma 8) 
(Lemma 9) 

- DS-MSCNz: There exist 
at least two edge- or 
branch-literals x, y from 
Spaces space-j, space-k 
respectively and a Literal z 
from the target space-i 
such that both literals are 
translated to z within their 
respective spaces and 
have opposite signs. 
Literals x and y are also 
called distinguished (c.f. 
Definition 4, 
(Distinguished Literal)). 
- SS-MSCNz: Similar 
definition, but x, y have 
same signs 
- tMSCN: [q] is formed in 
step k and belongs to a 
MSSB to which one or 
more of its parents 
belonged in steps <k 
- DS-MSCNz as well as 
SS-MSCNz are used to 
show that a MSCN cannot 
be first augmented to sizes 
>1 and then split except in 
the trivial case of a 
tMSCN (Lemma 9-c)  
- tMSCNs are called 
trivial, because they can 
result in Splits which 
happen only inside 
symmetric Blocks and 
thus can be avoided 
altogether when an 
appropriate sorting 
condition within CRA+ is 
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chosen (called: DB-
Sorting, (Lemma 8)  

(Aligned MSRTs.o,), 
(Alignment Clause , 
(Aligned Node) 
(Alignment MSRTs.o) 

12,13 -Aligned MSRTs.o:- ∃C S, C’ 
derivation of C such that:∀n
MSRTs.o., S’ is 2CNFn,  
∀Cx  S’ the following is true: 
a-
SortOrder(C’,S’)>SortOrder(Cx,
S’) 
b- S’ is l.o. 
- A node n of size M is said to be 
aligned if:  

- For M<=2: n possesses 
a Clause Set with an 
aligned MSRTs.o 
- For M>2: 
(iii) All nodes of 

sub-trees of size M 
are l.o. 

(iv) All nodes of 
sub-trees of size <M 
are aligned 

- An MSRTs.o whose nodes are all 
aligned is called Alignment 
MSRTs.o 
 
 

(Lemma 6) 
(Lemma 7) 
(Lemma 10) 

- C is called Alignment 
Clause 
- The fact that a MSRTs.o 

produced by 2SAT-
GSPRA+ is always an 
Alignment MSRTs.o is 
used to show that the 
number of new nodes on 
size-level 1 in any 
inductive step cannot 
become more than the 
number of elements in 
ACS which are linearly 
many (Lemma 7) 

Resolution procedures: 
(2SAT-GSPRA+), (Align) 
(LCS) 

14 c.f. Section III.1 (Lemma 6) 
(Lemma 7) 
(Lemma 8) 
(Lemma 9) 
(Lemma 10) 

-Used to study the effect 
of resolving one single 
clause at a time and count 
the number of unique 
nodes produced in the 
final MSRTs.o 

- LCS: List of Tuples: 
<Clause Set, Node index> 
initially empty used to 
store already resolved 
Clause Sets and their 
generated sub-trees 
 

2SAT Fast Generic Pattern 
Resolution Algorithm 
(2SAT-FGPRA) 

15 c.f. Section III.1 (Lemma 11) -This is the central, 
practical Algorithm 
proposed in this work (and 
a similar one is proposed 
in [Abdelwahab 2016-2] 
as well). It overcomes the 
main drawback of 2SAT-
GSPRA+ of having to re-
construct sub-trees again 
and again in case their 
respective Clause Sets are 
not l.o. Instantiation is 
performed always in any 
node on the whole 
2CNFnode rather than step 
wise one clause at a time.  
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- 2SAT-FGPRA is shown 
to correctly simulate 
2SAT-GSPRA+ (Lemma 
11-a) 
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VI-B Selected Lemmas and their Dependencies on Formalized Concepts 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Lemma 2: For a 2CNF Clause Set S it is true 
that: 

- S is l.o. iff CRA+(S) reaches a 
stable Set equivalent to LIT(S) 

- S is satisfiable iff CRA+(S) is 
satisfiable 

- S is logically equivalent to 
CRA+(S) 

l.o. Condition 

Stable Set 

CRA+ 

Satisfiable 

Assignment 

LIT 

Lemma 3: The complexity of CRA+ is in 
O(M2(Log M+N) 

l.o. Condition 

l.o.u. Condition 

CRA+ 

CRA 

RPC 

Lemma 4: CRA+ terminates always 
converting an arbitrary 2CNF Clause Set to a 
stable one 

l.o. Condition 

l.o.u. Condition 

CRA+ 

CRA 

Stable Set 

Lemma 1: 
- CRA produces monotone 

Mappings 
- (x | y) iff (x<y) 
- (xspace-i | yspace-i) iff (x | y) when 

involved Clause Sets are l.o. and 
order of clauses and images of 
clauses in respective spaces is 
preserved  

l.o. Condition 

monotone Mapping  

CRA 

VSpace 

LIT 

(x | y)  

FIRSTC 

SortOrder 
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Lemma 5: 

a- For all n1,n2 nodes ∈ MSRTs.o: if n1,n2 are not directly connected in 
steps <=k then they cannot be directly connected in steps >k, if the sort 
order of their Clause Sets is not altered, except in the trivial case when 
the new Clause belongs to a block, parents of n1,n2 were instantiating in 
steps <=k and n1, n2 become equivalent (tCN, tMSCN).  
b- For all M>1: A node [q] of size M is CN/MSCN iff there exist 
CN/MSCN [q’] of size M-1 augmented in size by a clause C such that: 
[q]=[q’] 
c-Let up1,upj be upper bounds of nodes generated during the whole 
process of resolution in size-levels 1 and j, respectively, where 1<j<=M. 
If Splits are not accounted for in any size-level j, then: upj<=up1 
 

2SAT-GSPRA 

LLRBS 

CNs/MSCNs 

Lemma 9-a: CNs and MSCNs containing clauses belonging to the BS 
or their images cannot split. 
Proof sketch: in step k: there exists a Clause C1={a, b}∈BS and a 
mapping M such that: a’=MST(a), b’=MST(b). In this step also: All 
literals of C1 and all their images were new in all branches and spaces 
leading to the MSCN [q], i.e., for all i,lspace-i,S: where lspace-i is a branch- 
or edge-literal of [q]STsp1,sp2,sp3,., S Clause Set of any parent node in space-
i.: (lspace-i | aspace-i) and per Lemma 1-a also: M(lspace-i)<M(aspace-i). 
To split [q], in steps>k:: there must exist a Clause C2={x, y}∈BS and a 
parent node p of [q] such that: xspace-i = lspace-i for some literal lspace-i in p, 
i.e., M(xspace-i)<M(aspace-i). Then: Per l.o. of BS: Either x=a which 
means [q] is only augmented in size not split or a<x and thus (a | x) per 
Lemma 1-b. BS is then in one of the forms:  
1-{..{..,a}..{r, x}..{s,	¬x}…{a, b}…{x,y}…} or  
2-{..{a,b}..{x,y},..}. Form 2 leads to (aspace-i | xspace-i), hence: M(aspace-i) 
<M(xspace-i). Contradiction. Form 1 causes the MSCN to be augmented 
by {x,y}, not split. 
(A shorter version of this anchor proof of this work, using the ‘>’ 
relation, can be found in Footnote 43) 
 

BS, rank, size 

CN, MSCN 

Mapping , monotone Mapping  

Lemma 8: ∀SB, DB, tCN such that SB⊆DB and tCN formed in SB:tCN 
can be avoided by appropriately choosing the DB Sorting Condition. 
Similarly: tMSCNs can be avoided as well. 
 
 
 

Lemma 7: (Alignment MSRTs.o )  

2SAT-GSPRA+ produces aligned MSRTs.os and if Splits are not 
counted, then during the whole process of resolution: 

-The number of newly added size-1-level nodes cannot exceed  
RCC2-SAT*M2 

- The number of newly added size-j-level nodes, j>1, cannot 
exceed RCC2-SAT*M2 as well, for any level j 
 
 

2SAT-GSPRA+ 

Lemma 6: (Aligned Base Cases) All size 1,2 nodes of any MSRTs.o of a 
2CNF Clause Set S produced by 2SAT-GSPRA+ are aligned. 
 

2SAT-GSPRA+ 

SB, DB, tMSCN  

RPC, Aligned MSRTs.o 
 

ACS 

Aligned MSRTs.o 

2SAT-GSPRA+ 

Distinguished-, 
non-Distinguished Literal 

Lemma 1 
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CRA-Form 

Lemma 10: The total number of unique-nodes produced by 2SAT-
GSPRA+ in the final MSRTs.o, including those generated by Splits, is 
bounded above by: 
 

2+ c*RCC2-SAT2 *M4 + RCC2-SAT *M3, c<=2, i.e., O(M4) 
 
Moreover: This bound remains polynomial, i.e., O(M6), if Splits are 
admitted which are not BigSps (i.e., Lemma 9-c relaxed). 
 
 

Alignment Clause 

CN, MSCN 

ACS 

Lemma 5 

Lemma 6 

Lemma 9 

Lemma 11: The following is true: 
a- For any arbitrary 2CNF Clause Set S: ∃MSRTs.o such that: 

2SAT-FGPRA(S)=2SAT-GSPRA+(S). 
b- For 2SAT-FGPRA to produce the MSRTs.o shown to exist 

in point a-: For the main Assistance Operations used by 2SAT-FGPRA 
on 2CNF Clause Sets S of size M: The total, worst case number of 
Primitive Operations performed by any single one of them during a 
run of 2SAT-FGPRA is: O(M9). If Splits are admitted which are not 
BigSps, i.e., Lemma 9-c is relaxed, then this bound is O(M13). 

 
 
 
 
 

Top-parts 

l.o. Condition 

Lemma 10 

2SAT-FGPRA 

Lemma 12: 2SAT-GSPRA+ and 2SAT-FGPRA are complete, truth 
table equivalent Algorithms, i.e.: Let S be a 2CNF Clause Set, A any 
Assignment of truth values of literals in S, then: Applying A on the 
MSRTs.o produced by any of the two Algorithms leads to a TRUE leaf 
iff A satisfies S. 
 

 
 
 
 
 

Assignment 

Assignment Satisfies S 
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