
Journal Academica

JOURNAL ACADEMICA • NEW YORK

VOLUME 8, NO.1, October 13 2018

N. Abdelwahab

	

Copyright © 2018 JOURNAL ACADEMICA FOUNDATION • All rights reserved

ISSN 2161-3338 • www.journalacademica.org

VOLUME 8, NO. 1, October 13 2018

editor in chief

S. Feigenbaum

TABLE OF CONTENT

Theoretical Computer Science

Elnaserledinellah Mahmoud Elsayed Abdelwahab

#2SAT is in P
pp.	003-088

Abdelwahab, N.

3

3

Journal Academica Vol. 8(1), pp. 3-88, October 13 2018 - Theoretical Computer Science - ISSN 2161-3338
online edition www.journalacademica.org - Copyright © 2018 Journal Academica Foundation - All rights reserved

Full Length Research Paper

#2SAT is in P

Elnaserledinellah Mahmood Abdelwahab*
Senior Project Manager, makmad.org e.V., Hanover (Germany)

Received January 29 2018, Revised May 15, 2018; Accepted June 27 2018

ABSTRACT
This paper presents a new view of logical variables which helps solving efficiently the
#P complete #2SAT problem. Variables are considered to be more than mere place
holders of information, namely: Entities exhibiting repetitive patterns of logical truth
values. Using this insight, a canonical order between literals and clauses of an arbitrary
2CNF Clause Set S is shown to be always achievable. It is also shown that resolving
clauses respecting this order enables the construction of small Free Binary Decision
Diagrams (FBDDs) for S with unique node counts in O(M4) or O(M6) in case a particular
shown Lemma is relaxed, where M is number of clauses. Efficiently counting solutions
generated in such FBDDs is then proven to be O(M9) or O(M13) by first running the
proposed practical Pattern-Algorithm 2SAT-FGPRA and then the counting Algorithm
Count2SATSolutions, so that the overall complexity of counting 2SAT solutions is in P.
Relaxing the specific Lemma enables a uniform description of kSAT-Pattern-Algorithms
in terms of (k-1)SAT- ones opening up yet another way for showing the main result. This
second way demonstrates that avoiding certain types of copies of sub-trees in FBDDs
constructed for arbitrary 1CNF and 2CNF Clause Sets, while uniformly expressing kSAT
Pattern-Algorithms for any k>0, is a sufficient condition for an efficient solution of kSAT
as well. Exponential lower bounds known for the construction of deterministic and non-
deterministic FBDDs of some Boolean functions are seen to be inapplicable to the
methods described here.

Keywords: Logic, Duality, Variables, Patterns, Container, kSAT, #2SAT, FBDD, P=NP

*Corresponding author: elnaser@makmad.org

Abdelwahab, N.

4

4

CONTENT

I INTRODUCTION 4
II USED METHODS 9
II-1 Exponential Lower Bounds on
FBDD Construction Revisited 12
II-2 #2SAT Solution Methodologies .. 15
II-3 Similarities and Differences
between previous and current work 17
II-4 How to read this paper 18
III THEORY 22
III-1 Definitions 22
III-2 Converting arbitrary 2CNF Sets
to l.o.u and l.o. ones 40
III-3 Way of work of 2SAT-GSPRA+ 44
III-4 CN-Splits in MSRTs.os 48
III-5 Complexity of 2SAT-FGPRA 57
III-6 Counting Solutions 62
III-7 Main Result 68
IV DISCUSSION OF RESULTS 71
V REFERENCES 72
VI APPENDICES 74
VI-A Formal terms, their definitions and
usage ... 74
VI-B Selected Lemmas and their
Dependencies on Formalized Concepts
 .. 86

1 There is no loss of generality in giving
examples from the monotone 2CNF case,
because properties of logical variables, relevant
for this work, are already applicable in this
simplest case.
2 Formal definitions and illustrations of BDDs
are seen below, but can also be found in, e.g.,
[Wegener 2000].

I INTRODUCTION
The current work aims at applying a
new view of logical variables to the
solution of #2SAT. This view
considers variables to be more than
mere place holders of information,
namely: Entities exhibiting
repetitive patterns of logical truth
values. The ideas are materialized in
novel Algorithms imposing
universally applicable structural
criteria on 2CNF Clause Sets,
according to which clauses are
ordered by their pattern lengths and
least literals are always chosen for
instantiation without prior trials.
This enables efficient construction
of small FBDDs upon which simple
and equally efficient counting
Algorithms can then be applied. To
informally illustrate the basic ideas
we start first with a concrete
example.
Let be S={{x0,x4}{x1,x2}{x2,x3}}.
w.l.o.g., a monotone 2CNF formula1 for
which we would like to find a validating
Truth Assignment by instantiating
literals. Our instantiations result
ultimately in a decision tree, which may
be abstracted into a Binary Decision
Diagram (BDD)2. Let PR, the used
procedure, be described in pseudo-code3
as follows.

PR:

Inputs: Arbitrary 2CNF Clause Set S
Output: BDD
Data Structure: Store of resolved Sets and their
BDDs (ST)
Steps:

3 Functions used in all pseudo-codes given in this
work, except those of the theory section, have
commonly used meanings and don’t need any
further specification as the procedures they are
embedded in intend to give the reader only a
sketch of the ideas under investigation, details
and formalizations of which are found only in the
Theory section.

Abdelwahab, N.

5

5

1- Select any Literal x from a Clause CÎ S
2- Put x=TRUE in S forming S’
3- If (S’ evaluates to TRUE)

leftResult=TRUE-Node
Else
if (any C’Î S’ Evaluates to
FALSE)
leftResult=FALSE-Node

4- Put x=FALSE in S forming S’’
5- If (S’’ evaluates to TRUE)

rightResult=TRUE-Node
Else
if (any C’’Î S’’ Evaluates to
FALSE)
rightResult=FALSE-Node

6- Search for S’ in ST if not
TRUE/FALSE

If found
Put leftResult =BDD of S’
Else
- Put leftResult=PR(S’)
- Store S’ as well as leftResult
in ST

7- Search for S’’ in ST if not
TRUE/FALSE

If found
Put rightResult =BDD of S’’
Else
- rightResult=PR(S’’)
- Store S’’ as well as
rightResult in ST

8- Create node Result such that: S is
Clause Set of Result and:
 a- leftNode(Result)=leftResult
 b- rightNode(Result)=rightResult
9- Store S as well as Result in ST
10- Return Result

This procedure does not instruct us how
to choose literals for instantiation. Such
a choice is crucial for the size of resulting
BDDs as can be seen in Figures (1-a) and
(1-b) in which non-terminal node counts
are 5 and 10 respectively.

Let us call the content of a stack which
registers the Literal choices made by PR
in step 1 (while solving a problem p
expressed in a 2CNF Clause Set): A
Variable Ordering (to be précised in
Section III, Notation: ∏p). (Figure 1-a)
shows an ordering ∏p = 2<1<3<0<4
which makes the number of nodes
generated in the final BDD half the
number needed if we chose ∏’p =
0<1<2<3<4 of (Figure 1-b). We call ∏’p
Canonical Ordering (Notation: ∏pc),
because it represents the order in which
variables are listed from left to right in
the Truth Table:

x0 x1 x2 x3 x4
0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0

…..

Since the number of possible orderings
may be very large even for a reasonable
number of variables: Finding for a
problem p an optimal ordering ∏p, i.e.,
one which enables the construction of
minimal BDDs, is in general NP-
complete (c.f. [Bolling 1996]). The first
trivial, but important observation we can
make, however, is the following:

Observation-1: It is possible to change
any ordering ∏p to a canonical one ∏pc

Algorithm – A1

Figure 1-b

Figure 1-a

Truth Table – T1

Abdelwahab, N.

6

6

by renaming variables in the Truth
Table.
In the above example: Renaming
x2>x0,x3>x2,x0>x3 makes the smaller
BDD achievable via a Canonical
Ordering for S’={{x0,x1}{x0,x2}{x3,x4}}
which is equivalent, via renaming, to S.
An important consequence of
Observation-1 is that we can focus our
attention on the study of conditions
under which a Canonical Ordering
produces BDDs with small node counts,
instead of searching in all Ordering
possibilities for suitable choices. This
idea leads to the following central
Conjecture:

Conjecture: If during the resolution
process in which PR recursively
processes any 2CNF Clause Set S:

1- It always uses Canonical
Orderings to instantiate literals in S

2- It makes sure S that respects the
conditions under which Canonical
Orderings produce small BDDs,
transforming S into an equivalent S’ if
necessary, Then the BDD produced by
PR is small.

Therefore, this work has two main
objectives:

a- First understand and then formalize
the conditions under which Canonical
Orderings produce small BDDs
b- Prove the Conjecture.

To get an intuitive understanding of what
those conditions may be, we focus our
attention on constructing BDDs for S in
the above example only using Canonical
Orderings. More particularly: We would
like to investigate node counts whenever
one single clause is resolved against a

4 To do so: PR has to be changed to allow
sequential processing of clauses. To avoid
unnecessary complication and length: This is
only done in the formal part starting with Section

BDD constructed for the beginning of a
Clause Set4. (Figure 1-c) shows two
starting alternatives for S:
S’’={{x1,x2}{x2,x3}} and
S”’={{x0,x4}{x1,x2}}. Node counts are
clearly different. Remembering that
(Figure 1-b) depicts the BDD for the
whole S, we have therefore two
possibilities of node-count-growth from
M=2 to M=3, where M is the number of
clauses in S: From 4 (S’’) to 10 or from
6 (S’’’) to 10. In both cases we notice a
blow-up of the number of nodes resulting
from “copying” almost all of previously
constructed nodes.

What about S’ ? (Figure 1-d) shows a
node-count-growth from 3 to only 5 in
the BDDs constructed for
Siv={{x0,x1}{x0,x2}} and S’,
respectively.

III (the 2SAT-GSPRA Procedure of Definition
2). The reader may wish in this section to
consider PR capable of sequential processing of
clauses and continue reading under this
assumption.

Figure 1-c: Starting alternatives

Abdelwahab, N.

7

7

Obviously, the nature of growth in the
case of S’, the formula in which we
renamed variables to obtain a Canonical
Ordering, is different: The full BDD is
constructed from the previous one by just
adding two additional nodes to the
lowest BDD-level.

How can we explain this?

A second intuitive observation helps in
understanding this phenomenon:

Observation-2: Any variable xi
represents in the canonical Truth Table
a repetitive pattern of 0s and 1s whose
length is 2N-i and which is given by the
formula:

2N-i-1(0)2N-i-1(1)

where N is the total number of variables.

To fully appreciate this observation: A
graph may be drawn in which the x-axis
represents rows of a Truth Table and the
y-axis Boolean values given for a
particular 2CNF formula f. We call this
graph: Pattern-Domain of f (PDf).
(Figure 1-e) shows for Truth Table T1
PD{x0,x4}, PD{x2,x3}, PD{x2}, respectively.
A Pattern Length Repetition of a variable
v (PLRv) is the number of times a truth
pattern of v is repeated within the 2N
rows of the truth table. We call the
Pattern Length Repetition of the variable
with the least index in a clause C/Clause

Set S: Pattern Length Repetition of C/S
(PLRS/PLRC).

Using PDs, let’s try to explain what
happens when we go from the BDD of
Clause Set S’’={{x1,x2}{x2,x3}} (Figure
1-c, top) to the one of
S={{x1,x2}{x2,x3}{x0,x4}} (Figure 1-b).
(Figure 1-f) shows PDS’’ and PD{x0,x4}.

0

1

1 3 5 7 9 1113151719212325272931

{x0,x4}

0

1

1 3 5 7 9 1113151719212325272931

{x2,x3}

0

1

1 3 5 7 9 1113151719212325272931

{x2}

Figure 1-e: Example PDs of different clauses

Figure 1-d: Smaller growth rate

Abdelwahab, N.

8

8

As seen: PDS’’ consists of one self-
repeating pattern
P1=“0000111100111111”, where
PLRS’’=2 (i.e., PDS’’=2 x P1), P1
representing the concatenation between
sub-patterns for Clause Sets:
{2}{2,3}=”00001111”&
{2,3}=”00111111” in (Figure 1-c, top) .
When we want to resolve5 this pattern
with PD{x0,x4}=P2&P3, which has
PLR{x0,x4}=1, where
P2=”0101010101010101”,
P3=“1111111111111111” as seen in
(Figure 1-f, bottom), it is clear that we
need P1 to be bit-ANDed against each
one of P2 and P3. This explains why all
nodes of the BDD for S’’ had to be
copied once as can be seen in (Figure 1-
b). Clause {4} is appended there to all

5 Resolving PDf with PDg means: Producing PDh
such that h=AND(f,g).

copies of such nodes representing the
result of bit-AND operation between P1
and P2.

Obviously: Because PLR{x0,x4} < PLR S’’
this Copy-Operation (which we also
call: Split-Operation or just Split) was
necessary.
What about PDs of (Figure 1-d)? They
are shown in the following (Figure 1-g):

Here the new, to-be-resolved clause
C={x3,x4} has PDC=8x”0111”, PLRC=4

0

1

1 4 7 10 13 16 19 22 25 28 31

{{x1,x2}{x2,x3}}

0

1

1 4 7 10 13 16 19 22 25 28 31

{x0,x4}

0

1

1 3 5 7 9 1113151719212325272931

{x3,x4}

0

1

1 3 5 7 9 1113151719212325272931

{x0,x1}{x0,x2}

0

1

1 3 5 7 9 1113151719212325272931

{x0,x1}{x0,x2}{x3,x4}

Figure 1-f: PD of an already processed
Clause Set S’’ (top) compared to the PD of a
new clause (bottom)

Figure 1-g: PD of an already processed
Clause Set {{x0,x1}{x0,x2}} is bit-ANDed
with PD of {x3,x4} to form PD of
{{x0,x1}{x0,x2}{x3,x4}}

Abdelwahab, N.

9

9

while PD{0,1}{0,2}=(8x”0”) & (24x”1”) is
a pattern which repeats itself only once,
i.e., PLR{0,1}{0,2}=1. This gives us the
opportunity to resolve the new incoming
pattern of C with sub-patterns of
PD{0,1}{0,2} only once and then refer to the
result of this resolution whenever
needed. This is reflected in the BDD by
including node {3,4} (Figure 1-d,
bottom) as a common sink between two
constructed branches, thus reducing
drastically the total amount of unique
nodes.
Resuming this motivation example: We
can use the Pattern Domain of a 2CNF
formula f (PDf) to explain blow-ups in
the number of nodes generated by
sequential resolution procedures which
use Canonical Orderings to produce
BDDs. It turns out that resolving a
clause C with a Clause Set S, where
PLRC<PLRS necessitates Split-
Operations. Such Operations are
important causes of BDD blow-ups. In
the case of S’ above we have also seen
that sequentially resolving Clause Sets S
with a clause C does not induce Splits
when PLRC>PLRS. We call this
condition: Linear Order (l.o.). The core
of this work is formally showing that
Algorithms observing the l.o. condition
always produce small FBDDs.
Are there any sources of BDD blow-ups
other than Split Operations caused by
procedures not observing l.o.
conditions? An important part of this
work is also dedicated to showing that
nodes which are sinks between branches
(also called: Common Nodes (CNs))
may also cause Splits. Fortunately and
precisely because of the l.o. condition:
Those Splits are benign, i.e., they do not
cost, for each CN, more than a constant
number of additional nodes per inductive
resolution step.

6 Algorithm 2SAT-FGPRA in the Theory section
is the concrete, detailed counterpart.

II USED METHODS
This work is a second application of
ideas presented in [Abdelwahab 2016-1]
for solving hard problems, the first being
published in [Abdelwahab 2016-2]
related to 3SAT. At the core of those two
publications is a 3SAT-Solver producing
small FBDDs by enforcing l.o.
conditions on all resolved Clause Sets. In
the present work, this Solver is modified
to be applicable to the 2CNF case and
may informally be described as per the
following high-level pseudo-code and
Flowchart of (Figure 1-h)6:
PR+:

Inputs: Arbitrary 2CNF Clause Set S
Output: FBDD
Steps:

1- Use the Renaming and Sorting
Algorithm (CRA+, Definition 9) to
convert S to an equivalent l.o. Clause
Set S’, i.e., Set S’=CRA+(S).
2- Select the least Literal x from the first
clause CÎ S’.
3- Instantiate S’ using partial
Assignments:{x=TRUE}, {x=FALSE}
forming left- and right-Clause Sets S1,
S2, respectively
4- If either S1 or S2 are evaluated to
TRUE or FALSE, create left/right
TRUE/FALSE-nodes in the respective
case.
6- If neither S1 nor S2 are TRUE/FALSE
and are found in a Resolved-ClauseSet-
Store: Call yourself recursively first
with S1, then with S2, forming leftResult
and rightResult, respectively.
Otherwise: Call yourself only for the
Clause Set is new and not
TRUE/FALSE and return the BDD
stored for the other.
7- Form the finalResult from Clause Set
S’, leftResult and rightResult.

(Figure 1-i) shows the actual resolution
of F={{x1,x3}{x2,x4}{x0,x2}{x1,x4}{x2,x4}}
using 2SAT-FGPRA after it is converted
in to a l.o. Set S=CRA+(F)).

Algorithm – A2

Abdelwahab, N.

10

10

Before going into a discussion of the
mentioned publications, showing
differences between methods described
therein and modifications/adaptations
used in this work, known state-of-the-art
literature is briefly described. From the
vast literature around #2SAT,
BDDs/FBDDs and NP-completeness,
we have chosen only those research
findings which relate to our work or bear
possible challenges to our results.

FBDD for S

PRA+:

2CNF-Clause Set S

S’=CRA+(S)

FBDD already exists? Call yourself
recursively

forming left and
right Result

Return Result

Least Literal
Instantiation

Figure 1-h: Flowchart of Algorithm – A2 (PR+)

Creation of left and right
Clause Sets which may be

TRUE/FALSE

yes

Abdelwahab, N.

11

11

F
ig

u
r
e
 1

-i
:

2S
A

T-
FG

PR
A

 so
lv

in
g

2C
N

F-
Cl

au
se

 S
et

 S

Abdelwahab, N.

12

12

II-1 Exponential Lower Bounds on
 FBDD Construction Revisited

Most important BDD/FBDD
properties are known since the 80s
and 90s of last century and
represent well established facts
which contributed to the commonly
accepted idea that: Some important
Boolean Functions can only possess
large BDDs and/or FBDDs and
there are no ways to overcome this
restriction. We discuss the
seemingly apparent contradiction
between our findings and this
consensus, despite of the fact that,
because of the existence of
polynomial reductions, exponential
lower bounds proven in literature
are targeting mainly Boolean
Functions expressible in k- or 3CNF
while the work here concerns 2CNF
formulas.
Exponential lower bounds for
BDDs are known for Ordered
Binary Decision Diagrams
(OBDDs), which are the best
studied forms of BDDs and which
only need one variable order to
govern instantiations of Clause Sets.
Alternatively: An FBDD allows the
flexibility to choose a different
order for each branch. There are
many BDD variable ordering
heuristics in literature, but the most
common way to deal with ordering
is to start with something
"reasonable" and then swap
variables around to improve BDD
size. This dynamic variable
reordering is called sifting [Rudell
1993]. The overall idea is: Based on
a primitive "swap" operation that
interchanges xi and xi+1, pick a

7 N(f,Y) denoting the number of different sub-
functions obtained under all possible
assignments to Y.

variable xi and move it up and down
the order using swaps until the
process no longer improves the size.
The reader may have noticed that
the above procedure PR+
(Algorithm - A2) does not perform
any Variable/Literal selection-trials
and just proceeds, after converting
the Clause Set to a l.o. one, by
instantiating the least Literal of the
first clause.
The first exponential lower bounds
on the size of FBDDs have been
proven as early as 1984 by [Zak
1984] and [Wegener 1988]. In his
seminal paper Bryant also showed
[Bryant 1986] that integer
multiplication is a function which
cannot have a small OBDD
irrespective of the variable ordering
used. Later, this result was also
extended to the FBDD case. A long
list of papers, which reported
similar results for Boolean functions
such as: Hamiltonian-Circuit,
Perfect Matching, Clique-Only,
Triangle-Parity, Blocking Sets in
finite projective planes etc.
followed or were published in the
same period. In [Wegener 2000] a
lower bound technique which is
influenced by the algorithmic point
of view following [Sieling 1995] is
used to explain the methodology
behind the majority of results. It
turns out that variants of the
following observation were
constantly used:

"Lemma: Let f be a Boolean function of
n variables. Assume that m is an integer,
1 < m < n, if for m any m-element subset
Y of the variables N(f, Y) = 2m holds7,
then the size of any read-once branching
program computing f is at least 2m-1."

Abdelwahab, N.

13

13

[Abdelwahab 2016-1, Theorem 3]
shows that lower bounds related to
the construction of FBDDs obtained
using the above Lemma are
bypassed by Sequential Pattern
Resolution (SPR)-like Algorithms
using 3CNF representations. The
direct reason for that being the fact
that: While the proof of Lemma
requires the first m-1 levels of any
FBDD constructed for such a
function to constitute a complete
binary tree, SPR-like Algorithms
using 3CNF formulations always
form trees which are bound to reach
leaves after at most k<=3
instantiation steps in any tree-level
(Property 8 [Abdelwahab 2016-2],
Section II).
Most of the problems for which
lower bounds were proven using
this Lemma (for example: the
“blocking-sets in projective planes”
problem shown in [Gal 1997]) are
described in kCNF formulations
which reflect/preserve the exact
problem structure, i.e., in the
projective planes example: Every
plane is exactly one clause and
every point is exactly one variable.
[Abdelwahab 2016-1] calls such
descriptions preserving all
properties of decision structures of a
problem as well as
interrelationships between those
structures: Reserved Descriptions.
Let f be a Boolean Function for
which an exponential lower bound
LB on the size of the FBDD is
obtained, f’ an equisatisfiable 3CNF
formulation of f. The reasons why

8 Formalizations of the ideas expressed in the
points here are not attempted to avoid
unnecessary length.
9 Lemma could only be applied to the
blocking Sets problem, because of the
following combinatory property shown to
hold for projective planes [Gal 1997]:

LB isn’t applicable to f’ can be
informally summarized in the
following points8:
1- If f has a reserved kCNF
description, it is sometimes the only
way to guarantee that, for any m-
element subset Y of the input
variables of f, different sub-
functions obtained under all
possible assignments to Y are truly
distinct. For example in the
projective planes case we quote the
following part of the lower bound
proof [Gal 1997], page 15:

“Proof of the theorem. We
show that for every q-element
subset A of the variables, N(fΠ, A) =
2q holds, i.e., each truth assignment
to the variables in A yields a
different sub-function on the
remaining variables. Since each
line defines a clause of the
function fΠ, it follows from the
Fact9 that for an arbitrary q-
element subset A of the variables
there exist q clauses such that each
variable from A appears in exactly
one of them, and each variable
appears in a different clause.”
Obviously: Because f’ is formalized
in 3CNF, a line for projective
planes with q>3 cannot be
represented by only one clause
making the above Argument
inapplicable.
2- From the logical point of view, f
and f’ are not equivalent. This
means that Deterministic FBDDs
constructed for them are not
expected to be equivalent10. It also

"Fact: Let J={p1,…,pt} be a set of t<=m
distinct points of the projective plane P,
then there exist distinct lines {l1,…lt} such
that for i>=1, j <=t we have pi ∈lj iff i=j."
10 Let Gf, Gf’ be FBDDs of f, f’ respectively, then:
f = f’ iff Gf (a) = Gf’(a) for all aÎ{0, l}n, where

Abdelwahab, N.

14

14

means: There may be models for f
which are not models for f’ and vice
versa. As f and f’ are equisatisfiable,
they may disagree for a particular
choice of variables. As a matter of
fact: A typical equisatisfiable
translation from kCNF to 3CNF
usually looks like:
(A∨B∨x1)∧(¬x1∨C∨x2)∧(¬x2∨D∨E)
For a k=5 clause C=(A∨B∨C∨D∨E)
for example. Note that while C has
a model in which B=TRUE,
x2=TRUE and all other variables
including x1 are FALSE, this is not
a model for the translated 3CNF
formula. In such constellations: The
number of variables in clauses of f’
are strictly larger than the number
of variables in clauses of f and
consequently: Sub-function
properties, necessary for the
application of the above Lemma are
disturbed by the introduction of new
variables which have no place in the
definition of f and must be treated
as Don’t Cares, i.e., variables
whose truth values don’t matter for
the overall truth-value of the
formula. Treating variables as Don’t
Cares makes the FBDD Non-
Deterministic, causing all lower

Gf(a) denotes the leaf node value obtained from
Gf for input string a [Wegener 2000].
11 It must be mentioned here that
introducing new variables is known, since
the 90s, to disturb exponential lower
bounds obtained for multiplication-BDDs
for example. In [Burch 1991] a method for
using BDDs to verify multipliers while
avoiding exponential complexity is shown.
Normally the outputs of an n by n bit
multiplier circuit are represented by BDDs
with 2n variables, since the circuit has 2n
inputs. In the method described there, the
outputs of the circuit are represented by a
BDD with 2n2 variables, instead. The size
of this BDD is cubic in n.
12 Recall: A Deterministic FBDD is a FBDD in
which every node is marked with a variable

bounds for Deterministic FBDDs to
be inapplicable11.
3- Let LB be an exponential lower
bound on the size of any Non-
Deterministic FBDD12 constructed
for f, as the one given in [Sauerhoff
2003] for example, not necessarily
using Lemma. Call an efficiently
constructed Non-Deterministic
FBDD: pNFBDD and an efficiently
constructed Deterministic FBDD:
pFBDD, then: For LB to be
applicable on procedures using f’,
something like: “A pNFBDD exists
for f iff a pFBDD exists for f’” must
be true13.
Although starting with a pFBDD for
f’, a pNFBDD for f is easily
constructed by erasing all markings
which represent variables not in f
(call a Set containing them: Z), the
other way around is not obvious.
Starting with a pNFBDD for f, in
which some nodes are unmarked
does not give any clue to how
markings must be put such that a
procedure produces a pFBDD for f’.
Correct markings have to be
properly “guessed” indicating that
this translation may be hard14.

name, while a Non-Deterministic FBDD has
some unmarked nodes [Wegener 2000] .
13 Note that if f and f’ are equivalent, agreeing on
all used variables, this is trivially true.
14 To see this: Suppose Gf is a pNFBDD
for f and suppose there exists an input a,
such that Gf(a)=TRUE. This means that
there is a path P in Gf leading to a TRUE
node. P may contain unmarked nodes
{un1,un2,…uni}. If we attempt, using Gf, to
construct a pFBDD, say Gf’, for f’, we need
to mark {un1,un2,…uni} with names of
variables from Z such that a path P’ in Gf’
(corresponding to P) leads to a TRUE leaf.
There are two ways to do so: Either all
possibilities of assignments for variables in
Z must be explicitly extended creating in
the worst case an exponential sub-tree in
Gf’ rather than only one single path, or

Abdelwahab, N.

15

15

II-2 #2SAT Solution Methodologies
There are two types of approaches
related to counting problems: Ones
which aim at improving known
exponential bounds on finding exact
solutions and others which seek better
approximations. As we are presenting in
this work a method for exact counting,
we will focus in this section on
describing the known state-of-art in this
category and underline differences to our
proposed method. We discuss also
results from parametric complexity
which use some notion of ‘truth patterns’
to reduce the effort needed to bound the
number of solutions more tightly.
In exact counting, methods based upon
DPLL-style exhaustive search and those
based on what is called knowledge
compilation are distinguished. The
method presented here can be classified
as a knowledge compilation method, in
which a given CNF formula is converted
into a FBDD from which the count can
be deduced easily, i.e., in time
polynomial with regard to the size of the
formula. One advantage of this
methodology is that once resources have
been spent on compiling the formula into
this new form, complex queries can
potentially be answered quickly.
State-of-the-art methods of this type
are best represented by the ones
using deterministic, decomposable
negation normal forms (d-DNNF)
as described in [Darwiche 2002],
which are generated by an
exhaustive version of the DPLL
procedure called c2d. Those forms
were created to provide alternatives
for BDDs, which could, in
principle, be constructed and then
“read off” for the solution count by
traversing the BDD from the leaf
labeled “1” to the root. BDDs are

different assignments of those variables are
deterministically tested against f’. Both

commonly not used for this
purpose, because of the consensus
regarding exponential lower bounds
discussed in the previous section.
Compilation of a given CNF
formula F into d-DNNF is done via
c2d by first constructing a so-called
decomposition tree, which is a
binary tree whose leaves are tagged
with the clauses of F and each of
whose non-leaf vertices has a set of
variables, called the separator,
associated with it. The separator is
the set of variables that are shared
by the left and right branches of the
node, the motivation being that once
these variables have been assigned
truth values, the two resulting sub-
trees will have disjoint sets of
variables. The resulting components
can then be easily combined using
AND nodes [Handbook of
Satisfiability 2009]. In [Beame
2013] a special case of d-DNNF
formulas, called decision-dDNNF,
is shown to be convertible to
FBDDs with only a quasi-
polynomial increase in
representation size in general,
leveraging known exponential
lower bounds for FBDDs, to
exponential lower bounds for
decision-DNNFs. The power of
decision-DNNFs is separated from
d-DNNFs and a generalization of
decision-DNNFs known as AND-
FBDDs is described as well. This
implies exponential lower bounds
for natural problems associated with
probabilistic databases (c.f. [Beame
2013]).
Algorithms for specifically counting
solutions of 2SAT can be found in, e.g.,
[Fuerer 2007]. The idea is an extension
of a research direction focusing on 2SAT
problems, where every variable occurs

options don’t qualify as ‘efficient
construction’ procedures.

Abdelwahab, N.

16

16

x-times at most, obtaining the best time
of O(1.246069n) for counting models
and max-weight models, n number of
variables, achieved also in polynomial
space. The decisive parameter
determining the running time of the
proposed Algorithm is the number of
degree x=3 nodes. Progress in
eliminating those nodes is possible when
there are many of them, i.e., when the
average degree is higher. In that case: A
degree 3 vertex in the constructed graph
with a neighbor of degree 3 is found
more frequently and they can both be
eliminated in the same time. The
improved time bounds for degree 3
propagate to formulas of higher degrees,
because the average degree has a
tendency to shrink during the iterative
algorithm’s run (c.f. [Fuerer 2007]).
In [DeItaLuna 2012] a method is
described where given a formula F,
#2SAT(F) can be bounded above by
considering a binary pattern analysis
over its set of clauses. For each clause
Ci = {xj, xk}, Ai is a set of binary strings,
called: ‘binary pattern’, such that the
length of each string is n, the number of
variables. The values at the j-th and k-th
positions of each string, 1 ≤ j, k ≤ n
represent the truth value of xj and xk that
falsifies Ci. E.g., if xj ∈ Ci then the j-th
element of Ai is set to 0. On the other
hand, If xj ∈ Ci then the j-th element of
Ai is set to 1. The same argument applies
to xk. Using this notion of a ‘pattern’ it
can be shown that for F = {C1, C2,...,Cm},
a 2CNF formula, n variables, m ≥ 2: The
hard cases to answer whether
#2SAT(F)=k, are given when m>n. This
is one of the rare occasions in the
literature of hard problems, where a
formalized notion of ‘truth patterns’ is
used to reveal intrinsic properties of
logical formulas.

15 Note that a Cook-Levin reduction is actually
parsimonious. Cook-Levin (Restated): For every

Before going into the next section, where
we distinguish this work from
[Abdelwahab 2016-2], we summarize
important findings of the previous two
sections in the following points,
underlining differences between known
#SAT solutions and our presented one:
1- Exact counting of solutions can be
done using exhaustive knowledge
compilation methods which avoid BDD
construction, because of the consensus
that BDDs possess exponential lower
bounds for important Boolean Functions
and may thus become large in the worst
case.
2- Using an equisatisfiable 3CNF
representation f’ of a Boolean
Function f makes lower bounds
obtained for Deterministic-FBDDs
of f inapplicable, because of the
additional variables in f’.
Polynomial Non-Deterministic
FBDDs of f fail to capture
polynomial Deterministic-FBDDs
of f’, rendering lower bounds for
Non-Deterministic FBDDs of f out
of scope as well. This paves the way
to the usage of SPR-like methods
constructing FBDDs like the ones
published in [Abdelwahab 2016-2]
to efficiently solve #SAT,
especially knowing that
conveniently, many of the known
reductions between NP-complete
problems, including those related to
3SAT, are parsimonious, i.e., they
preserve the number of solutions
during the translation15.
3- Independent of the above points:
The present work is concerned with
the construction of FBDDs for
2CNF formulas. To the best of our
knowledge: There are no lower
bounds, susceptible to challenge
our results, for this special case.

language L ∈ NP, there is a parsimonious
reduction from L to SAT.

Abdelwahab, N.

17

17

II-3 Similarities and Differences
between previous and current work
[Abdelwahab 2016-2] was set up to
prove two related assertions:

1- That SPR Algorithms described there
(GSPRA+, FGPRA) always produce
small FBDDs for 3CNF formulas.
2- That they are efficient 2-
Approximation Algorithms for
MinFBDD, an NP-complete problem.

Although the first point was enough to
demonstrate the main theoretical result,
it was necessary to provide evidence,
that the used Algorithms have practical
value as well. Similar to procedure PR+
(Algorithm – A2): GSPRA+ and FGPRA
apply, using CRA+, the l.o. condition on
all Clause Sets generated during
resolution. In the same time: Creation of
new Clause Sets via instantiation is
solely done using least literals. The final
output being a special form of DAGs we
call also here MSRTs.o, whose main
features are:

a- Nodes contain Clause Sets
b- Variables in a Clause Set may be
renamed one or more times in the same
branch. Sequences of such renaming
operations are called: Variable Space.
c- MSRTs.os can be easily converted to
FBDDs by abstracting the least
Variable/Literal index of every Clause
Set.

The essential difference between this
work and [Abdelwahab 2016-2] is the
way in which formal concepts are
defined, namely: Keeping definitions as
close as possible to Set- and Graph-
Theory. This facilitates proofs of
relevant lemmas and makes them more
accessible to readers than their
counterparts in [Abdelwahab 2016-2].
New proofs for previously not shown
properties of MSRTs.os (like the fact that
no N-Splits can exist in such graphs for
example) are also important additions.

Table T2 gives an overview of essential
formal similarities and differences.

Concept,
Algorithm,
Proof

Previous
formalization

Current
formalization

Linearly
Ordered (l.o.),
Linearly
Ordered, but
unsorted
(l.o.u.) Clause
Sets

Structural property
of Clause Sets

Same as before
+ Var/Literal
Index
comparison
Relation “<” is
characterized by
the Literal
precedence
Relation “|”
(Definition 8.6)

N-Splits, CN-
Splits, BigSps

Copies of nodes Special forms of
Clause Sets
occurring in a
MSRTs.os
(Definition 6)

MSRTs.o Special form of
DAG

+SR-DAG
formally defined
+ Special form
of SR-DAG
(Definition 10)

Variable
Space (VS),
CN/MSCN,
tCN

-Variable Space:
Sequence of CRA+
Operations,
-CN: Sink node
-MSCN: Sink node
in a VS
-tCN/tMSCN:
CNs/MSCNs
produced in
Symmetric Blocks

Same as before

CRA,CRA+ Properties shown:
- Termination
- Correctness
- Complexity

Same as before
+ (x | y) iff (x<y)
(Lemma 1-b)
+ S and CRA+(S)
are
equisatisfiable
+ They are also
equivalent
(Lemma 2-b,c)

Lemma 9-a:
No BigSps

Shown using “<”
Relation and l.o.
property of Clause
Sets of parent
nodes of a
CN/MSCN

Shown using “|”
Relation and l.o.
property of the
Base Clause Set
(BS)

Lemma 9-b:
No N-Splits

Not shown Shown using
new
characterization
of Splits

Lemma 9-c:
No size>1
Splits

Shown using the
“<” Relation,
CNAL properties

Shown using the
“|” Relation,
CNAL
properties and
BS l.o. property

Lemma 14:
Counting
Solutions

Not in the scope Shown using
DAG properties

Abdelwahab, N.

18

18

Theorem 1:
Sufficient
conditions
which
guarantee the
efficiency of
SPR-like
kSAT-
Algorithms

Not in the scope Shown using
induction on k
and (Lemma 11)

SPR
Resolution
procedures

GSPRA+,FGPR:
-produce optimal
Top-Parts
-their output is
equivalent
- FGPRA is
efficient, 2-
approximative to
MinFBDD

2SAT-GSPRA+,
2SAT-FGPRA:
1- Top parts are
not shown to be
optimal
2- 2SAT-
FGPRA
simulates 2SAT-
GSPRA+
correctly
(Lemma 11-a)
3- 2SAT-
FGPRA is
efficient
(Lemma 11-b)

II-4 How to read this paper
The Conjecture formulated in the
introduction of this work includes claims
which bear important consequences
requiring an extra effort to organize
formal concepts and/or proofs thereof in
such a way, that the overview is not lost,
while readers attempt to check
correctness. For this purpose the
following tools are made available for
use throughout this whole document:

1-All formal Concepts, Algorithms, and
Proofs are explained with examples
while expressing them as close as
possible to Set Theory for formal
concepts and concrete near-to-C pseudo-
code for Algorithms, highlighting exact
formal definitions always in bold. Cross-
References to definitions are availed to
simplify reading.
2- Lemmas, Figures and References are
cross-referenced (in pdf-file format).

16It is commonly known that BDDs admit
efficient Algorithms for counting solutions after
being built. Therefore: Verifying that node

3- All Acronyms used are highlighted in
blue bold when they are defined for the
first time.
4- All concepts are listed in a
comprehensive table in Appendix A,
where Acronyms, formalizations, their
place in definitions (including page
numbers and links), lemmas using them
as well as their actual purpose are
included.
5- Selected lemmas and their
dependencies on formal concepts are
listed in Appendix B.
6- A table of content (first page) is
provided to facilitate overview as well as
referencing of content.
7- (Figure 1-j) below shows
interdependencies between lemmas and
links them to Theorem 1. Although all
lemmas are important, parts marked
green represent the most crucial pieces
of information, sufficient alone to
produce the main result one time,
followed in importance by blue marked
parts. Coloring parts intends to help
readers first find critical flaws in our
argumentation more easily and second
distinguish between the two presented
results in the following way:
i- In a first quick scan, a reader may wish
to consider only the green path, where
one can verify the O(M6) bound of
(Lemma 10) on the upper size of the
FBDD/MSRTs.o, shown to hold under
the assumption that (Lemma 9-c) is
relaxed, i.e., only N- and BigSps cannot
be produced, as follows16:

a- Concepts: l.o./l.o.u. 2CNF Clause Sets
(Definition 1), (Variable Space) ,
(CNs/MSCNs) , Splits (N-, as well as

counts cannot exceed O(M6) for any 2CNF
formula is the essential effort a reader may want
to do in order to accept the second proof of the
main result of this work, i.e., Theorem 1-b.

Overview of differences and similarities to our
previous work – T2

Abdelwahab, N.

19

19

CN-Splits), (Alignment MSRTs.os) are
all well-defined.
b- Algorithms (CRA), (CRA+), (2SAT-
GSPRA+) and (2SAT-FGPRA) are
sufficiently detailed and their way of
work clearly described.
c- It is always possible to convert an
arbitrary 2CNF Clause Set to a l.o. one
using CRA+ (Lemma 2-a). If necessary,
this is done in each recursive step by
2SAT-GSPRA+. CRA+ delivers Clause
Sets which are not only equisatisfiable
(Lemma 2-b), but also equivalent
(Lemma 2-c) to the original Clause Set.
CRA+ is also efficient (Lemma 3).
d- Mappings produced by CRA are
monotone and the Literal precedence
Relation ‘|’ is an exact characterization
of the trivial Index comparison Relation
‘>’ (Lemma 1-a, b). This information is
used in the crucial proof of (Lemma 9-
a).
e- Splits are the actual causes of
exponential behavior. While N-Splits are
taken care of in the definition of the
Canonical Ordering criteria (especially
the l.o. condition as has been seen) and
thus avoided altogether by 2SAT-
GSPRA+ (Lemma 9-b), CN-Splits may
still occur.
f- CN-Splits cannot occur for nodes of
rank>1 (BigSps) (Lemma 9-a).
g- 2SAT-GSPRA+ repeats the
construction of sub-trees for Clause Sets
of sub-problems when they are found to
be breaching the l.o. condition. This
makes sure that any CN/MSCN at size-
level j is only a CN/MSCN at size-level
j-1 augmented by a newly resolved
clause during re-construction (Lemma 5-
b), i.e., the number of CNs/MSCNs is
preserved (in the worst case) when they
move up the hierarchy of size-levels.
h- No more than O(M2) nodes can be
created in the lowest j=1 size-level

during the whole process of resolution
(Lemma 7)
i- Rank 1 nodes (i.e., those which have
only unit clauses) produce only O(M)
new nodes when they split (trivial)
j- All this leads to the O(M6) upper
bound of (Lemma 10, point 4).
k- 2SAT-GSPRA+’s repetitive
construction of sub-trees causes
redundant operations which are avoided
altogether by 2SAT-FGPRA. 2SAT-
FGPRA is a practical Algorithm in
which all clauses of a Clause Set are
instantiated with values of the chosen
least Literal in the same time. It
simulates 2SAT-GSPRA+ correctly
(Lemma 11-a).
l- The worst implementation of 2SAT-
FGPRA requires comparing all created
nodes with each other and always using
CRA+ to rename their Clause Sets,
making the overall asymptotic
complexity O(M13), because Lemma 9-c
is relaxed (Lemma 11-b).
ii- In a second scan readers may want to
study (Lemma 9-c) (blue path), which
shows that CN-Splits cannot occur in
size-levels j>1. This reduces the upper
bound of the nodes count of the
FBDD/MSRTs.o to O(M4):

a- As before: The only new nodes
added by 2SAT-GSPRA+ to the lowest,
size-level j=1 in any step and at any time
can’t be more than O(M2) nodes. As
2SAT-GSPRA+ is sequential: Those
nodes form, at each step, the basis for
size-j-level nodes, j>1, and may be
propagated up in the hierarchy of levels,
making the maximum amount of nodes
in each such level j during the whole
resolution process not exceeding the
upper bound of nodes at level 1 (Lemma
5-c).

b- Either trivial- or rank 1, size 1-
CNs can split (Lemma 8, Lemma 9-b)

Abdelwahab, N.

20

20

making the maximum amount of nodes
added in this way to the lowest level also
O(M2), since one such Split causes, in
the worst case, a constant amount of
nodes to be created on the size-level it
occurs in.

c- The final FBDD has in the worst
case a total unique node count of only
O(M4) (Lemma 10).

d-To count Assignment possibilities:
An Algorithm Count2SATSolutions
traversing in the worst case all nodes and
edges of the FBDD/MSRTs.o is used. As
both 2SAT-GSPRA+ and 2SAT-FGPRA
are complete, Truth-Table equivalent
Algorithms (Lemma 12),
Count2SATSolutions is shown to be
counting exact solutions correctly
(Lemma 13). To do so: It requires O(M9)
or O(M13), in case Lemma 9-c is relaxed
(Lemma 14).

e- One main result, (Theorem 1-a)
shows conditions under which SPR-
Algorithms solving kSAT-problems
become efficient (green path). It turns
out that avoiding both N- as well as big
CN-Splits are sufficient conditions for
polynomial time performance. In the
same time: The uniform way of
expressing node counts and time
complexity of base case k=2 in terms of
base case k=1 makes it possible to
demonstrate P=NP by formulating and
using the strongest induction hypothesis
possible. This is what is gained by
relaxing Lemma 9-c.

f- Because Count2SATSolutions is in
P (both green and blue paths), P=NP
follows also this way (Theorem 1-b).

Abdelwahab, N.

21

21

(Lemma 5-b):
For all M>1: A
node [q] of size
M is
CN/MSCN iff
there exists
CN/MSCN [q’]
of size M-1
augmented in
size by a clause
C such that:
[q]=[q’]

Properties of CRA+

(Lemma 2): CRA+ translates
2CNF Clause Sets to equivalent
Sets

(Lemma 3): CRA+ is in
O(M2(log (M+N)))

(Lemma 4): CRA+ terminates
always producing stable 2CNF
Clause Sets

(Lemma 6): In a
MSRTs.o: Nodes of sizes
1,2 are all aligned

(Theorem 1):

a- kSAT-GSPRA+/kSAT-
FGPRA uniformly produce
small MSRTs.os
b- #2SAT is in P (Lemma 14): Counting

Solutions in a MSRTs.o
is in P

(Lemma 11-b): 2SAT-
FGPRA takes a polynomial
number of primitive
operations to produce the
MSRTs.o. of an arbitrary
2CNF Clause Set S

(Lemma 10): O(M4) is an
upper bound of the number of
unique nodes created by
2SAT-GSPRA+ for a 2CNF
Clause Set S. Moreover: This
bound remains polynomial,
i.e., O(M6), if Splits are
admitted which are not
BigSps.

(Lemma 11-a): 2SAT-
FGPRA simulates
2SAT-GSPRA+
correctly

(Lemma 9): While
2SAT-GSPRA+ resolves
a 2CNF Clause Set S
a) No big Splits can
occur
b) - N-Splits can’t exist.
 - Rank-1, Size-1 CNs
can split
c) Rank-1, Size-1 CNs
augmented to sizes>1 in
step k cannot split in
steps >k.

(Lemma 7): The Upper
bound of nodes created
at level 1, without
counting Splits is
RCC2-SAT *M2

(Lemma 1):
a-CRA produces monotone
Mappings
b- (x|y) iff x<y
c- ….

(Lemma 5-c): If Splits
are not counted in any
size-level j>1 then:
upj<=up1

(Lemma 8): tCNs and
tMSCNs can be avoided
when DB sorting
condition is used

(Lemma 12): 2SAT-
GSPRA+ and 2SAT-
FGPRA are TT-
equivalent

(Lemma 13):

Count2SATSolutions is
correct

Figure 1-j: Interdependencies of Lemmas

Abdelwahab, N.

22

22

III THEORY
III-1 Definitions
Definition 0: (Nomenclature and Basic):
Variable, Literal, Clause, 2CNF
Formula/Clause Set, Truth
Assignment, Partial Assignment,
Restricted Assignment, 2SAT Decision
Problem, Graphs, Vertices/Nodes,
Edges, adjacent Vertex, Source, Target,
reachable, Child, Parent, Base Node,
Path, Branch, acyclic, Length of
Path/Branch, Directed Acyclic Graph,
Source Path of node n, Level of node n
in a DAG, Level of edge e in a DAG,
Topological Ordering of a DAG,
Sequential Resolution DAG, 2CNF
Clause Set of a node, Base Clause Set of
a node, TRUE-DAG, FALSE-DAG,
rankC, rankNode, Size of a node n, Size
of a 2CNF Clause Set S, Top-Part of a
SR-DAG, LeftDAG, RightDAG, literals
in a 2CNF Clause Set S, literals of a
2CNF Clause Set S to the left of Literal
x, SortOrder, Head-Literal, Tail-
Literal, Connectivity of a Literal x in
2CNF Clause Set S, Permutations of a
Clause, Resolution Complexity
Coefficient, Instantiations of literals,
Satisfiability, Derivations of a Clause,
Linear Derivations of a Clause,
InstSimple, InstSimpleC, Convert a
Clause to SR-DAG, First occurrence of
Literal x in a 2CNF Clause Set S, Select
a Literal x of a 2CNF Clause Set S

Definition 0.1: Consider a finite Set of
Boolean variables Var={x1, x2, . . . xn}

a- A Literal is either a Boolean
variable xi or its negation ¬xi. Indices
deduced from enumerations are also
used to stand for Literal names. The
relation ‘a<b’ expresses the fact, that
index a of some Literal is smaller than
index b of another in a given
enumeration.

b- A clause is a disjunction of
literals. For example, (x1 ∨ x2) is a clause.

c- A Formula/Clause Set in
conjunctive normal form (CNF) is a
propositional formula in which clauses
are connected using the Boolean AND
operation. For example: (x1 ∨ x2) ∧
(x2 ∨ ¬x3) ∧ x5 is a CNF formula.

d- A formula ϕ is a 2CNF when
every clause has exactly 2 literals. For
example (x1∨x2)∧(x2∨¬x3) is a 2CNF
formula, but (x1∨x2∨¬x4)∧(x2∨¬x3)∧(x5)
is not.

e- A Truth Assignment is a total
Function f:Var =>{0,1}. When f is
partial, the assignment is called Partial
Assignment. When f is restricted to only
one variable it is called Restricted
Assignment.

Definition 0.2: 2SAT Decision Problem:
Given a 2CNF formula ϕ, is there a Truth
Assignment such that ϕ evaluates to
true?

Definition 0.3: A graph G = (V,E)
consists of a finite set of Vertices/Nodes,
V, and a finite set of Edges E.

• Each edge is a pair (v,w) where v, w Î V
• A Directed Graph, or Digraph, is a

graph in which the edges are ordered
pairs: (v, w) ≠ (w, v)

• In the Digraph: b is called adjacent to
a when there exists an edge (a, b)ÎE,
also:
• Node a is not adjacent to node b.
• Node a is called predecessor of

node b, node b is a successor of
node a

• The Source of the edge is node a,
the Target is node b.

• Node b is called reachable from
node a if b is adjacent to a or there

Abdelwahab, N.

23

23

is a non-empty list <e1,e2,…,en>17
of edges connecting, indirectly, a
to b. Node b is also called in that
case Child of node a, a Parent of b.
Boolean Predicates
Child(n1:Node, n2:Node),
Parent(n1:Node,n2:Node) are
formally used to express this fact

• Base Node (BN) of G is the source
of its first edge.

• A Path/Branch is a list of vertices
<w1, w2,…wn> such that for all the
edges:
(wi, wi+1)ÎE, 1 <= i < n, and each
vertex is unique except that the
path may start and end on the same
vertex if G is cyclic.

• An acyclic Path is a Path where
each vertex is unique

• The length of the Path/Branch is
the number of edges along the path

• A directed graph which has no
cyclic paths is called a DAG
(Directed Acyclic Graph).

• Source Path of a node n in a DAG
(SPn) is a list of edges connecting
n to the Base Node: SPn=<e1,
e2,…em>, ei:Edge. A node may
have several non-empty Source
Paths and is always reachable from
the Source.

• Level of node n (Ln) in a DAG is
an integer representing the number
of edges in the longest Source Path
connecting n to the Base Node. It
is given by:
Ln=Max(length(SPn1)..length(SPnk))
where any SPni is a Source Path of
n.

• Level of an edge e (Le) in a DAG:
Le= LSr+1 if Sr is the Source of e.

17 <obj1,obj2,…objn>, where obji:Type is the
notation used to denote lists of Objects of Type.
Type shall be omitted when obvious.

• A Topological Ordering (TO) of a
DAG is an ordering of its nodes
such that:
∀e:Edge, e=(vi,vj), vi,vjÎV: i< j.

• A DAG formed for a 2CNF Clause
Set BS and whose nodes contain
2CNF Clause Sets is called a
Sequential Resolution18 DAG
(SR-DAG or SR-DAGBS),
i.e.,∀n:NodeÎd:DAG: ∃S, S is
2CNF Clause Set, S is the Clause Set
of n (2CNFn). BS is 2CNFBN.

• A TRUE-DAG is a SR-DAG with
only one node labeled TRUE and
whose Clause Set is empty. A
FALSE-DAG is a SR-DAG whose
only node is labeled FALSE and
whose Clause Set is empty as well.

• rankC: (C:Clause) => N is a
Function returning the number of
literals contained in a clause.
rank2CNF, rankNode are similar
Functions returning the maximum
number of literals in any clause in
the 2CNF Clause Set of a node.
∀n:NodeÎd:SR-DAG:
RankS=Rankn=Max{rankC(C1)..
rankC(Cm)}, C1,..,CmÎS, S is 2CNFn

• The size of a node n in a SR-DAG
(Sizen) is an integer representing
the number of clauses in the Clause
Set of that node. The same integer
is used to denote the size of a
Clause Set S (SizeS).
In a SR-DAG of a 2CNF Clause
Set S of size M the set of all nodes
containing Clause Sets of sizes M
or M-1 is called the Top-Part of the
SR-DAG. Topd:SR-DAG={n:NodeÎd |
∃S, S is 2CNFn, SizeS=M or
SizeS=M-1, SizeBNÎd=M}

18 The word “Resolution” and/or any of its
declinations are not referring in any place of this
work to the classical Resolution procedure used
in Logics.

Abdelwahab, N.

24

24

• LeftDAG: (n:Node)=>SR-DAG
Is a Function which, given any
node n of a SR-DAG, returns the
SR-DAG of its left Child if
existent. RightDAG is defined
similarly.

• SubTree: (n:Node)=>SR-DAG
Is a Function which, given a node
n of a SR-DAG, returns the portion
of the SR-DAG starting with n.

Definition 0.4: For a 2CNF Clause Set S
of the form:
{{a1,b11}{a1,b12}..{a1,b1i}
 {a2,b21}{a2,b22}..{a2,b2j}…
 {am,bm1}{am,bm2}....{am,bmk}}19

a) LIT: (S) => Var
Is a Function mapping S to the Set of
all unique Literal Names/Indices in S

b) LEFT: (x:Literal Î C, C:ClauseÎ S) =>
Var
Is a Function mapping Literal x, and
clause CÎ S to the Set of all variable
Names/Indices occurring in the
string representation of S to the left
of Literal x in clause C. Right(x,C) is
defined similarly.

c) SortOrder:(C:ClauseÎ S,S)=>int
Is a Function mapping clause CÎ S
and S to an integer number
representing the position of C within
S.

d) First Literal in any clause is called
Head-, last ones is called Tail-literal
(HL, TL).
HL={L:Literal | CÎ S,C={L, t},
t:Literal}
TL={L:Literal | CÎ S,C={t, L},
t:Literal}
Connectivity:(x:LiteralÎ S,S)=>int
Is a Function mapping a Literal x in a
Clause Set S (also: Connectx,S) to the

19 AND and OR connectives are omitted as per
known convention.
20 Recall that nPr=n!/(n-r)!

number of clauses of S in which the
Literal x appears

e) For any clause CÎ S the cardinality of
the Set of all clauses which contain
permutations of literals in C (permC)
is called Resolution Complexity
Coefficient (RCC). Both are formally
defined as follows:
- permC={CÎ S | C={a, b} or C={b, a}
or C={a} or C={b}, a, b:LiteralÎC}
-RCCk-SAT=kPk+kPk-1+kPk-2….+kP1
i.e., for 2SAT
RCC2-SAT= 2P2 + 2P1 = 420

f) Instantiations of literals,
Inst:(A:Assignment, S) => 2CNF Clause
Set are Functions using Total, Partial
or Restricted Truth Assignments to
create new 2CNF Clause Sets. They
substitute the literals in Clause Sets
by Boolean values given in the
Assignments. The clause resulting
from applying an instantiation on any
CÎ S is called a Derivation of C. It is
called Linear Derivation if
consecutive instantiations respect the
linear order of literals in C21. If
consecutive instantiations result in a
clause containing only truth values
and no literals, the derivation is
called: Empty Derivation.
Derivations containing one TRUE
value are called Positive Derivations,
those containing only FALSE values
are called Negative Derivations.
Empty, Positive and Negative
Derivations can be directly evaluated
to TRUE or FALSE. In this work we
assume that this evaluation is
embedded in the Inst function. If this
evaluation results in the TRUE, S is
said to be satisfiable by A. When
Partial Assignments used by Inst are
related to only one variable, Inst is

21 Examples of derivations of clause C={x, y }
for any ordered indices x, y are {x} and {y}
respectively of which only the latter is a linear
derivation if the order is given by: x<y.

Abdelwahab, N.

25

25

called InstSimple. InstSimple can also
be restricted to only one clause.

Formally:
1) InstSimpleC:(A:Assignment,C:Cla

use) => Clause
2) Derivation of a Clause C

isÎ{C’:Clause | C’Î permC}.
3) Linear Derivation of C is Î

{C’:Clause| C’={a,b} or C’={b} , a,
b:LiteralÎC, a<b}

4) Empty Derivation of C is Î
{C’:Clause |C’={TRUE} or
{FALSE} or {TRUE,FALSE} or
{FALSE,TRUE} or
{FALSE,FALSE} or
{TRUE,TRUE}}

5) Positive Derivation of C is Î
{C’:Clause| TRUE ÎC’}

6) Negative Derivation of C is Î
{C’:Clause| C’={FALSE,FALSE}
or C’={FALSE}}

7) Every Derivation of C is
Î{C’:Clause| C’Î permC or C’Î
Empty Derivation of C}

g) Convert(C:ClauseÎS)=>SR-DAG. Is
a Function mapping a 2CNF clause
C={a1,b11} to a SR-DAG by
substituting in two subsequent simple
instantiation steps first a1 with TRUE
and FALSE creating Clause Sets and
placing them in the respective left-
and right-nodes of the SR-DAG and
then doing the same for b11 as in
below (Figure 2):

22 Alternatively: Clauses in S can be enumerated
from left to right. In that case subscripts i,j are
omitted and only one index is used. This is the

h) FIRST(L:Literal, S)=>int
Is a Function mapping a Literal to its
integer position (starting from the
left) in the string representation of S.
FIRSTC is the version of this function
which returns the index of the clause
in which L appears for the first time
in the current enumeration of clauses.

i) SELECT(S)=>int
Is a Function selecting a Literal from
LIT(S).

Definition 1: Almost Arbitrary-, Linearly

Ordered-, Linearly Ordered, but Unsorted

Clause Sets, Block, Block-Sequence, Block

Literal, Symmetric Block, Dissymmetric

Block, DB Sorting Condition

For a 2CNF formula S of the above form,
S is called linearly ordered (l.o.) if the
following Conditions hold:

a) ∀ai,bij∈	Ci,j: ai<bij, i.e., Literal
Names/Indices are sorted in
ascending order within clauses22.

b) S is sorted by ai & bij in
ascending order taking into
consideration negation signs23.
Formally: ∀i,j,x,y: if i<j then
L2∈Cj,x >= L1∈Ci,y, where L2 is
HL of Cj,x and L1 HL of Ci,y
SortOrder(Cj,x,S)>
SortOrder(Ci,y,S)

c) ∀xÎLIT(S),∀Ci,jÎS:
if x ∉ LEFT(x,Ci,j) then
∀yÎ LEFT(x,Ci,j): x>y
(all new Names/Indices of literals
occurring for the first time in any
clause of S are strictly greater
than all the Literal
Names/Indices occurring before
them in S).

d) S is a Set, i.e., clauses
appear only once in S.

way clauses are referred to in the rest of this
paper.
23 i.e., {1,2} comes before {1,3} or {¬1,3} and
{¬1,2} before {1,2} or vice versa.

Figure 2

Abdelwahab, N.

26

26

If S fulfills Conditions a), c), d), but not
b) it is called linearly ordered, but
unsorted (abbreviated l.o.u.). If S fulfills
Conditions a), d) only it is called almost
arbitrary (a.a.). Clause Sets of the form:
S={{ax,bx1}{ax,bx2} .. {ax,bxi,}} are
called Blocks and are referred to by the
name of the leading Literal (in this case
S is called ax-Block). Clause Sets of the
form: S={Ba…Bn} are called Block-
Sequences (Bseq). ax is called Block-
Literal. Clauses having ax as leading
Literal are said to belong to the ax-Block.
A Block Bx is called Symmetric Block
(SB) if ∃A: Assignment such that:
instSimple(A:{X=TRUE},Bx}=
instSimple(A:{X =FALSE}, Bx}
i.e., -ve and/or +ve instantiations of
Block Literal x result in the same Clause
Set. It is called Dissymmetric Block
(DB) if ∃A:Assignment such that:
instSimple(A:{X=TRUE},Bx}=S1,
instSimple(A:{X =FALSE}, Bx}=S2 and
either S1 ⊆ S2 or S2⊆ S1.
i.e., -ve and/or +ve instantiations of
Block Literal x result in Sets S1, S2 and
one of them is included in the other. If a
DB Bx is sorted such that all clauses
containing –ve instances of Literal x are
placed before all those containing +ve
instances or vice versa, this condition is
called: DB Sorting Condition.

Definition 2: 2SAT-GSPRA Procedure,

Align Procedure, Name Literal, Least Literal

Rule, Edge Literal, Branch Literal, Base

Clause Set, Variable Ordering, Canonical

Ordering

The 2SAT-Generic Sequential Patterns
Resolution Algorithm (2SAT-GSPRA)
applied to an arbitrary Set S of 2CNF
clauses consists of the following
procedure:

2SAT-GSPRA:

Inputs: Arbitrary 2CNF Clause Set S of size M
Output: SR-DAG
Steps: -
1- convert arbitrary clauses in S to a.a. ones

(only sorting literals inside each clause).

2- choose a clause C0 Î S
3- convert C0 to a SR-DAG using Convert(C0)
4- set IRT (Intermediate Resolution Tree) =

SR-DAG produced in 3
5- ∀ Ci Î S (one by one)

 IRT=Align(IRT , Ci)
6- return IRT

Align (SR-DAG, C):

Inputs: An SR-DAG with base-node n and S
2CNFn, an a.a. 2CNF clause C
Outputs: SR-DAG
Steps: -
If (SR-DAG=FALSE-DAG)

Return FALSE-DAG
else
 If (SR-DAG=TRUE-DAG)
 Return Convert (C)

else
{ <bracket-1>
Update S in node n with C: S=S ∪ C
X=SELECT(S) such that X is the least
Literal of S
leftC=instSimpleC({X=TRUE},C)
rightC= instSimpleC({X=FALSE},C)
if (leftC=empty)

(i..e. C evaluated to TRUE via
InstSimple)
leftResult=LeftDAG(n)

 else
 If (leftC=Nil)

(i..e., C evaluated to FALSE
via InstSimple)
leftResult=FALSE-DAG
else

{<bracket-2>
leftResult=
align(LeftDAG(n), leftC)

}<bracket-2>
if (rightC=empty)

rightResult=RightDAG(n)
 else
 If (rightC=Nil)

rightResult=FALSE-DAG
else
{<bracket-2>
rightResult=
align(RightDAG(n), rightC)

}<bracket-2>
Result=SR-DAG formed from node n, left- and
rightResult
Return SubTree(Result)
}<bracket-1>

Abdelwahab, N.

27

27

1. A node in a SR-DAG is symbolized
by [x] if the lead clause in its Clause
Set is headed by a least-Literal x.
Moreover: x is called the Name
Literal (NL) of this Clause Set/node.

2. Edges going out of a SR-DAG node
[x] are marked with x and represent
instantiations of the NL x of the
Clause Set S of that node (this fact is
called the Least-Literal/Head-Clause-
rule of S or just Least-Literal Rule of
S, LLRS). Formally:
NL=LLRS={i:Literal |∃BS: 2CNF
Clause Set, ∃n:NodeÎSR-DAGBS, S is
2CNFn, SELECT(S)=i and
∀xÎLIT(S): i<x}

3. Literals on edges of branches leading
indirectly to a node n are called
branch-literals of n while literals on
edges connected directly to n are
called edge-literals of n. Every edge-
Literal is a branch-Literal, but not
vice versa.

4. A variable ordering of a problem p
(∏p) expressed as a 2CNF Clause Set
S and resolved by any resolution
procedure PR is a list of integers
representing indices of
Literal/variable names indicating
priorities of instantiations of
literals/variables of S used in PR.
Formally: ∏p=<i,j,k,…> where
i,j,k,…ÎVar such that i<j<k<….

5. If ∏p represents the canonical, truth
table ordering of variables the
following notation is used: ∏cp. As
the 2SAT-GSPRA procedure
described above always uses LLRS to
instantiate Clause Sets S, it obviously
uses ∏cp

The following example shows for
2CNF Clause Set
BS={{0,1}{2,3}{1,2}} the first steps
of 2SAT-GSPRA(BS):

A) C0={0,1} is converted to a SR-DAG
identical with (Figure 2) (replace a1
by 0 and b11 by 1) using Convert(C0),
where node n0 contains Clause Set
{{0,1}}, n1 is TRUE-DAG, n2
contains Clause Set {{1}}, n3 is
TRUE-DAG and n4 is FALSE-DAG

B) Align(SR-DAG{0,1},{2,3}):
a) S={{0,1}} ∪ {2,3}={{0,1}{2,3}}
b) least Literal x=0
c) leftC={2,3}
d) rightC={2,3}
e) IRT=leftDAG(n0)=TRUE-DAG
 (the DAG of node n1)
f) leftResult=Align(TRUE-DAG,{2,3})

Ø Return Convert({2,3})

g) IRT=rightDAG(n0)

h) rightResult=Align(IRT,{2,3}), node=n2

i) S={{1}} ∪ {2,3}={{1}{2,3}}
ii) least Literal x=1
iii) leftC={2,3}
iv) rightC={2,3}
v) IRT=leftDAG(n2)=TRUE-DAG
 (The DAG of node n3)
vi) leftResult=Align(TRUE-DAG,{2,3})

Ø Return Convert({2,3})

vii) IRT=rightDAG(n2)=FALSE-DAG
viii) rightResult=Align(FALSE-DAG,{2,3})

Ø Return FALSE-DAG

ix) Result=SR-DAG formed from
 node n2, left- and rightResult
x) Return SubTree(Result)

i) Result=SR-DAG formed from node n0,
 left- and rightResult
j) Return SubTree(Result)

Abdelwahab, N.

28

28

Definition 3: Sequentially Ordered SR-

DAG, Strongly Ordered-, Loosely ordered

2CNF Clause Sets

An SR-DAG of a Set S of 2CNF clauses
is called sequentially-ordered if
∀S, n	∈SR-DAG, S is 2CNFn:
S={Ci,Cj,…CM} for some
i<j<….<M’, M’<=M. M number of
clauses in S, Cx’s are clauses or
derivations of clauses enumerated
from left to right in S.
An SR-DAG of a Set S of 2CNF clauses
is called strongly ordered (s.o.) if ∀S,
n	∈SR-DAG, S is 2CNFn: S is linearly
ordered (l.o.) (Figure 3, right). In such
case the Set S is also called strongly
ordered. Strongly ordered Sets are
always linearly ordered, the inverse is
not always the case, i.e., some l.o. Sets
may have Clause Sets in their SR-DAGs
which are not l.o. If a Set S has a base
Clause Set which is l.o. while some other
Clause Sets in its generated SR-DAG are
l.o.u., then S as well as its SR-DAG is
called loosely ordered (lo.o., Figure 3,
left), e.g.: Loosely Ordered SR-DAG:
∀S, n	∈SR-DAG, S is 2CNFn: S is
either l.o. or l.o.u.

Figure 3: lo.o. and s.o. Trees

Abdelwahab, N.

29

29

X Y Z ……..

Q

Definition 4: Common Node, Head-CN,

Tail-CN, Trivial-CN, Supported CN,

Supporting Parent, Direct Parent, Direct

Child, Double-Sided CN from the perspective

of x, Distinguished Literal, Single-Sided CN

from the perspective of x, Non-Distinguished

Literal, CN-Augmenting Literal

A node [q] is called Common Node (CN)
in a SR-DAG of a Set of 2CNF clauses S
if ∃n1,n2	∈SR-DAG: [q] adjacent to both
n1 and n2, i.e., [q] becomes (in step k of
the resolution procedure) a common
child to two or more nodes [x], [y], [z],
… (Figure 4). This happens when
x,y,z,… literals are replaced by TRUE or
FALSE in their respective Clause Sets.
The common-node [q] contains the first
appearance of its name Literal (NL) q in
all branches of the SRT containing
[x],[y],[z],..

Figure 4: Common-node generated in <=k.

Types of common-nodes for 2CNF
clauses are Head- and Tail Common-
nodes (HCNs, TCNs).

More precisely:

- A CN [q] is called HCN if its Clause
Set has a leading/head clause C∈S,
NL q is HL of C

- A CN [q] is called TCN if its Clause
Set has a leading/head clause C’
which is a derivation of a clause C∈
	S, NL q is TL of C

(Figure 7, upper part) shows nodes n1,n2
not connected. They both get
instantiated through their least-literals
a,b to different directions in the SR-
DAG. Any further clause {x,y} in steps
>k will keep this situation intact, since a
and b remain the least-literals in their
respective Clause Sets and cannot be
bypassed by clause {x,y} in the new tree.

(Figure 7, lower part) shows a situation
where both nodes are merged in steps >k
(right) as the new clause {i,a} belongs to
a block Bi parents of both nodes were
instantiating in steps <=k. The added
clause makes N1 equivalent to N2 as
seen. We call those types of CNs: Trivial
Common Nodes (tCNs). They are
formed in SBs and are included in the
Properties/Lemmas dealing with the
generation of CNs. Formally: A node
[q]	∈SR-DAG is called Trivial Common
Node (tCN) if ∃n	∈	SR-DAG, S is 2CNFn,
S is SB, Child([q],n)=TRUE
A CN [q]	∈SR-DAG with S=2CNF[q],
produced in steps <=k, is called
supported in a step l>k if ∃C:Clause,
C∈Bx such that: S=S ∪ C in step l>k
while in steps <=k: ∃n	∈SR-DAG,
Parent(n,[q])=TRUE, S’ is 2CNFn, S’ is
Bseq and Bx ∉ S’,
i.e., its Clause Set S gets clauses
appended to its head in step l>k which
don’t belong to any Block instantiated in
steps <=k by one or more of its parents.
A parent-set of such a CN is called
supporting. In (Figure 5) an example is
shown for the CN {b} which is supported
by clause {c,d} not belonging to block
Ba. If a head-clause of a CN is also a
clause of one of the Clause Sets of its
parents, then this parent is called direct
parent of the CN. The CN itself is called
direct child of this parent (Figure 6):

Figure 5

Figure 9

Figure 10

Figure 6

Abdelwahab, N.

30

30

A CN [q] formed within a Block Bx
through +ve as well as -ve edge- or
branch-literals x is called: Double-Sided
CN from the perspective of x, DSCNx.
Such a x is called distinguished Literal
for [q]. A CN [q] formed within a Block
Bx through only +ve or only -ve edge- or
branch-literals x is called: Single-Sided
CN from the perspective of x, SSCNx, x
is called non-distinguished Literal for
[q]. Formally:

- CN [q]	∈SR-DAGBS is called DSCNx if
∃n1,n2:Node∈SR-DAGBS, x,y:Literal, S1
2CNFn1, S2 2CNFn2 such that: LLRS1=x,
LLRS2=y, x=¬y, Parent(n1,[q])=TRUE,
Parent(n2,[q])=TRUE.
- CN [q]	∈SR-DAGBS is called SSCNx if
∃n1,n2:Node∈SR-DAGBS, x,y:Literal, S1
2CNFn1, S2 2CNFn2 such that:
LLRS1=LLRS2=x, Parent(n1,[q])=TRUE,
Parent(n2,[q])=TRUE.

If for a CN [q] there is no distinguished
Literal x such that the CN is DSCNx, then
[q] is called simply SSCN. If a non-
distinguished Literal x for a CN [q]
formed in steps <=k is used to augment
the size of [q] in step l>k, i.e., x is
instantiated in a clause whose derivation
is added to the clauses of [q] in l, then x
is called: CN-Augmenting Literal
(CNAL) for [q].
CNAL={L:Literal∈C:Clause, [q] is
CN∈SR-DAGBS formed in steps<=k, L is
non-distinguished for [q] | Size[q] is
augmented in steps>k through
invocations: InstSimpleC ({L=TRUE},C)
or InstSimpleC ({L=FALSE},C) }

Concepts defined here are used mainly in
(Lemma 9-a), (Lemma 9-b) and (Lemma
9-c).

i

Figure 7

Base-Set/Node

N1: {a,..}{..}..
N2: {b,..}{..}..

......
a b

Base-Set/Node + {x,y}

N1: {a,..}{..}.. {x,y}
N2: {b,..}{..}.. {x,y}

......
a b

i

Base-Set/Node+{i!,a}

N1: {a}
N2: TRUE

TRUE

a
FALSE

Base-Set /Node+{i!,a}+{ ,a}

N1: {a}

TRUE

a
FALSE

Abdelwahab, N.

31

31

Definition 5: Dependency Graph, Leaves of

Dependency Graphs, Free Binary Decision

Diagrams

A dependency graph (DG) of a 2CNF
Clause Set S is a directed, acyclic graph
<V,E> where V is the Set of all NLs, E
the Set of ordered pairs <v1,v2>, v1,v2∈

)	representing instantiations of NLs
produced during resolution. DGs can be
deduced from SR-DAGs in a canonical,
straightforward way24 and used as
practical alternatives for truth tables.
They are equivalent to Free Binary
Decision Diagrams (FBDDs)25 as shown
in [Abdelwahab 2016-2] . The following
two properties define a DG:

1. Each NL can appear only once in a
branch.

2. Branches can have different
Literal/variable orderings ∏p

depending on the sub-problem p they
belong to26.

A leaf of a DG is a node whose value is
TRUE or FALSE. Positive leaves have
the value TRUE. (Figure 8) shows an
example of a DG for the exemplary s.o.
tree in Definition 3 (Figure 3).

24 By abstracting in each resolution-step for each
node of the SR-DAG and Clause Set S the least-
literal of the head-clause used in LLRS and
building out of it a corresponding node in the
DG.
25 FBDDs are normally generated by recording -
on top of resolution-procedures - variable
assignment decisions encountered while trying to

Definition 6: Splits, N-Splits, CN-Splits,

Split Node, Big-Splits

An SR-DAG is said to possess a Split if
∃S’:2CNF Clause Set such that: For some
n1,n2:Node∈SR-DAGBS, S1 is 2CNFn1, S2 is
2CNFn2, n1≠n2: S’⊆ S1,
S’⊆S2,∄n:Child(n,n1)=Child(n,n2)=TRUE
(i.e., n1,n2 possess common sub-
formulas, but don’t possess common
sub-trees). CN-Splits are characterized
on top of that by the existence of
different Derivations of the same clause
in the non-common parts of the Clause
Sets of both nodes. Formally: Splits are
called CN-Splits, if, in addition to the
condition above: ∃q:Node, ∃C:Clause∈
)*: S’ is 2CNF[q] , [q] is CN/MSCN in step
k and C is resolved in steps >k such that:
C1⊆S1, C2⊆S2, C1,C2∉S’, C1,C2∈Every
Derivation of C, C1≠C2.	If a Split is not a
CN-Split, it is called N-Split.

Splits are thus formed when either node
n containing Clause Set S constructed in
step k is duplicated one or more times in
steps >k together with all or parts of its
nodes or sub-trees, the cause of this
duplication being that S is resolved with
a clause whose least-Literal was new in
that step and had an index strictly less
than all or any indices of head-literals in
S as seen in the introduction (N-Split) Or
a CN [q] constructed in step k and/or any
of its nodes or sub-trees are duplicated

find a solution. The methods described here as
well as in in [Abdelwahab 2016-2] produce a
canonically ordered FBDD(=DG) representing
existent variable alignments in the used clauses.
26 In contrast to the more common OBDDs in
which one Literal/variable-ordering is governing
the whole graph.

Figure 8

Abdelwahab, N.

32

32

with variations27 one or more times in
steps >k (CN-Split). We focus on CN-
Splits in furtherance, since N-Splits are
already covered in l.o.u. and l.o.
conditions imposed by our main
Algorithms below which both require
condition c of Definition 1 prohibiting
the use of new names/indices which are
< indices of already resolved clauses.

Example of a CN-Split:

The reason why different CN-Splits
occur is generally that different
derivations of C get resolved with a CN
through different branches of the SR-
DAG linked to this CN. New nodes
[q]'=[q]+C' are formed where C' is a
possible derivation. [q'] is called: Split-
Node. If rank[q]=rankBN this form of
Splits is called Big-Split (plural:
BigSps) This situation is illustrated in
below (Figure 9) as well as the concrete
example of (Figure 10). BigSps are
causes of exponential behavior of 2SAT-
GSPRA when it is applied to a.a. or l.o.u.
Clause Sets.

Figure 10: A concrete example for the sequential
resolution of the ordinary 2-SAT case showing a
new clause {2!,5} traversing in step k a IRT
produced in steps < k. CN {3!} (left) is seen to
split (right) to form nodes {{3!}{2!,5}}} and
{{3!}{5}} respectively. This Split is not a
BigSps.

27 Different variations of the duplicated CN
correspond to the resolution of different

Concepts defined here are used mainly in
(Lemma 9-a), (Lemma 9-b) and (Lemma
9-c).

derivations of a newly resolved clause C with the
CN.

X Y Z ……..

Q

Base-Node

C (resolved in step >k)

C' C'' C'''

{2!,5}

{2!,5}

{5}

Figure 9

Abdelwahab, N.

33

33

Definition 7: Clauses Renaming Algorithm,

Connection Matrix, Renaming Precedence

Condition

The Clauses Renaming Algorithm
(CRA) is a procedure which takes an
arbitrary Clause Set S as input, renames
its literals yielding a new, logically
equivalent S' as output which is
guaranteed to be l.o.u. This procedure
consists of the following steps:

CRA:

Inputs: Arbitrary 2CNF Clause Set S of size M
Output: Clause Set S’
Steps: -
1. Enumerate clauses in S (starting with 0) in

ascending order.
2. For each clause Ci:

a) Arrange literals in ascending order
within Ci such that literals which were
not renamed before and appear more
often in other clauses become HLs
before those which appear less often or
which only appear in Ci. This condition
shall hereafter be called: Renaming
Precedence Condition (RPC). RPC uses
Connectx,S of Definition 0.4.

b) Create a matrix whose rows represent
variable/Literal names/indices while
columns represent clauses. This matrix
is called: Connection Matrix.

3. For all clauses Ci and all literals in Ci:

- Create a new row and write
column values TRUE or
FALSE according to whether
the Literal appears in the
corresponding clause or not.

4. Rename all variables in the Connection
Matrix in ascending order.

5. Reconstruct the clauses again using the new
variable names. This reconstruction may be
done by simply substituting each Literal in
the original Clause Set with its new Literal
name/index.

Example: If S = {{0,5} {0,2} {1,3}
{1,4} {2,3}}, then the Connection
Matrix of S is:

 C0 C1 C2 C3 C4
0 True True False False False
5 True False False False False
2 False True False False True
1 False False True True False
3 False False True False True
4 False False False True False

Transformed (via step 4 of CRA) to:

 C0 C1 C2 C3 C4
0 True True False False False
1 True False False False False
2 False True False False True
3 False False True True False
4 False False True False True
5 False False False True False

The new clause list for the above reads
S: S' = {{0,1}{0,2}{3,4}{3,5}{2,4}}.
Note that S' is l.o.u. Note also that if we
would want to convert S' to a l.o. Set by
sorting clauses via their least-literals (as
required by Condition b) in Definition 1)
we would get: S'' = {{0,1} {0,2} {2,4}
{3,4} {3,5}} which is not fulfilling
Condition c) because of Literal 3 (i.e., S''
is neither l.o. nor even l.o.u.). To convert
an arbitrary Clause Set to a l.o. Clause
Set, an extension to CRA is needed,
introduced hereafter with some
definitions:

Definition 8: Mapping, Image, Variable

Space, Node in space-i, Apply, Inverse Apply,

Equivalence via Mapping, trivial Mapping,

Stable Set, Stable Clause, Stable Clause Set,

Mixed Space Node, Single Space Node, Mixed

Space SR-DAG/Tree, Single Space SR-

DAG/Tree, Literal in space-i, Assignment in

space-i, Literal x proceeds y in space-i,

Mapping in space-i, monotone Mapping

Definition 8.1: Mapping: (N) => N is a
bijective function giving a Literal
Name/Index in a 2CNF Clause Set S its
new Name/Index after a renaming
operation using CRA. The new
Name/Index is also called: Image of the
Literal. New Names of literals forming
single clauses or Clause Sets are called

Abdelwahab, N.

34

34

Images of original clauses or Clause
Sets. Subsequent application of
mappings starting from a BS is called a
Variable Space (VS). To express that a
Clause Set is formed in a space-i the
notation: S={{..}…{..}}space-i is used. To
express that a node is formed in a space-
i the notation: Node space-i is used.

Definition 8.2: Apply: (M:Mapping, S:
2CNF Clause Set) => Clause Set
Is a function which replaces occurrences
of literals in a Clause Set S with their
Names/Indices given by the mapping M.
InvApply is similarly defined, but
applies to S: M-1 instead of M.

Definition 8.3: Two 2CNF Clause Sets
S1, S2 are said to be Equivalent via
Mapping (Notation: S1 ⇔M S2) if ∃M1,
M2:Mapping such that:
Apply(M1,S1)=Apply(M2,S2)=S’. S’ is
called: Syntactic Image of both S1, S2.

Definition 8.4: If ∃M:Mapping, S
2CNF Clause Set, ∀xÎLIT(S):
M(x)=x, i.e., each Literal index is given
itself after a renaming operation using
CRA, M is called trivial Mapping
(tMapping).
If ∃M:Mapping produced in step k
such that: ∀xÎSub, Sub⊆Lit(S):
M(x)=x in any step >k, i.e., a subset of
Literal indices is mapped to itself via
CRA in step k and remains always
mapped to itself for any step>k, Sub is
called a Stable Set of literals. If
∀x:LiteralÎCiÎS, xÎSub⊆Lit(S), Sub
is stable, then: Ci is called Stable
Clause. If ∀CiÎS, Ci is stable, then: S is
a Stable Clause Set.

Definition 8.5: If S1, S2 are 2CNF
Clause Sets of nodes n1,n2ÎSR-DAG,
respectively, S1≠S2, but n1=n2=n, then:
n is called Mixed-Space Node (MSN) as
opposed to Single-Space Nodes (SSN).

Definition 8.6: SR-DAGs with MSN
nodes are called Mixed-Space Trees

(MSTs). SR-DAGs with only SSNs are
called Single-Space Trees (SSTs). A
Literal index subscribed by space-i
(Lspace-i) refers to the name L given by a
mapping M in space-i. An Assignment
giving literals in space-i truth values is
called space-i-Assignment (Aspace-i)
If ∃space-i:VS such that: Sspace-i is a 2CNF
Clause Set where:
FIRSTC(x,Sspace-i)<FIRSTC(y, Sspace-i),
then: x proceeds y in Sspace-i or, if S is
known from the context, just: x proceeds
y in space-i (Notation: (x | y) space-i)
i.e., within space-i the first occurrence of
Literal x in Clause Set S comes before the
first occurrence of Literal y. When space-i
is known, its subscript is omitted.
Mappings subscribed by space-i:
(Mspace-i) refer to the mapping created by
a CRA operation within space-i.

Abdelwahab, N.

35

35

Example:
For S = {{0,5}{0,2}{1,3}{1,4}{2,3}}
and S' = Apply (M,S) =
{{0,1}{0,2}{3,4}{3,5}{2,4}} in the
example of Definition 7, Mapping M is:
{{0,0}{5,1}{2,2}{1,3}{3,4}{4,5}},
Stable-Set = {0,2}

Definition 8.7: A mapping Mspace-i is
called monotone Mapping in space-i
(mMspace-i), when ∀x,y∈LIT(Sspace-i):
if (x | y) space-i then also Mspace-i
(x)<Mspace-i (y)

Definition 9: Clauses Renaming &

Ordering Algorithm, CRA-Form

The Clauses Renaming & Ordering
Algorithm (CRA+) is a procedure which
takes an arbitrary 2CNF Clause Set S in
a space-i as input and applies CRA
repetitively generating a new mapping
and a new space each time. After each
step the intermediate Clause Set is sorted
as required by Definition 1b) before
iterating back. This is done until
renaming Literal indices in two
consecutive steps yields tMapping, i.e,
the Stable Set becomes equivalent with
the Set LIT(S), while the output Clause
Set S' becomes l.o.
The following recursive pseudo-formal
description of this procedure is used in
the below proofs:

CRA+:

Inputs: An arbitrary 2CNF Clause Set S
Output: l.o. Clause Set S’
Steps:

1- set CurrentMapping = null, CurrentSet=S
2- while (CurrentMapping != tMapping)

i. currentSet=CRA(CurrentSet)

ii. sort CurrentSet as instructed in
Definition 1 b)

iii. set CurrentMapping=Mapping
passed by CRA

3- S’=CurrentSet
4- return S’, S’ is called the CRA-Form of S.

Example: Following this procedure for
the above Set S = {{0,5}{0,2}{1,3}
{1,4}{2,3}} applying CRA to get S' =
{{0,1}{0,2}{3,4}{3,5}{2,4}} and a

sorting step giving the above S''={{0,1}
{0,2}{2,4}{3,4}{3,5}}.
A new CRA-iteration will yield the
following Connection Matrix:

 C0 C1 C2 C3 C4
0 True True False False False
1 True False False False False
2 False True True False False
4 False False True True False
3 False False False True True
5 False False False False True

It is then transformed to:

 C0 C1 C2 C3 C4
0 True True False False False
1 True False False False False
2 False True True False False
3 False False True True False
4 False False False True True
5 False False False False True

Mapping:
{{0,0}{1,1}{2,2}{4,3}{3,4}{5,5}},
Stable Set: {0,1,2,5} yields
S'''={{0,1}{0,2}{2,3}{3,4){4,5}} when
applied on S''. S''' is l.o. already and
needs no further sorting. Note that in the
last matrix all literals are forming an
ordered sequence which means that any
further renaming would result in
tMapping. This is the termination
condition.

Definition 10: Sequentially-Ordered,

Multi-Space SR-DAG, Multiple Space Block,

Multi-spaced Symmetric Block, Target Space,

Multiple Space Common-node

An MST whose Clause Sets are all l.o. is
called: Sequentially-Ordered, Multi-
Space Resolution Tree/SR-DAG
(MSRTs.o.), if ∀nspace-i:NodeÎSR-DAG:-
(2CNFn)space-i is l.o. A block Bx whose
Clause Set or derivations thereof (all or
part of them) belong to more than one VS
is called a Multiple Space Block, MSB
(Notation also: BxS1,S2,..,S1,S2,.. Variable
Spaces). Similar to Single Space Blocks:

Abdelwahab, N.

36

36

An MSB may be symmetric or
dissymmetric.

Formally: MSB = {
(Bx1)space-i:2CNF Clause Set |
∃space-j, (Bx2)space-j:2CNF Clause Set,
M: Mapping, where:
((Bx1)space-i ⇔M (Bx2)space-j) Or ((B’x1)space-i
⇔M (B’x2)space-j)), B’x1, B’x2 are Derivations
of Bx1, Bx2, in respective Spaces}	
	
Definition 10.1: An MSB Bx is called
Multi-spaced Symmetric Block (MSSB)
- MSSB = {
(Bx1)space-i:2CNF Clause Set |
∃space-j, (Bx2)space-j:2CNF Clause Set,
M: Mapping, where
((Bx1)space-i ⇔M (Bx2)space-j
Or
(B’x1)space-i ⇔M (B’x2)space-j)
B’x1, B’x2 are Derivations of Bx1, Bx2, in
respective Spaces and ∃Aspace-i, Aspace-j:
Assignment such that:
instSimple(Aspace-i:{X1=TRUE},
(Bx1)space-i) ⇔M
instSimple(Aspace-j:{X2=FALSE},
(Bx2)space-j)
}

Definition 10.2: A node in a space ST
(called: Target Space, TS) which is
target of two or more Variable Spaces is
called Multiple Space Common Node,
MSCN (Notation: [q]STS1,S2,..,S1,S2,..,ST
Variable Spaces to which the node
belongs). Formally: A node is called
MSCN if ∃n1,n2	∈ MSRTs.o not
necessarily of the same space: [q]
adjacent to both n1 and n2, i.e., in step
k of the resolution it becomes common
child/adjacent to two or more nodes,
possibly of different spaces [x]S1, [y]S2,
[z]S3, … in (Figure 11)28 generated in
steps <k. This happens when there exist
mappings M1,M2,M3…, such that:
x=M1(x’),y=M2(y’),z=M3(z’),…, where
x, y, z are literals in ST, and x’, y’, z’ are
literals replaced by TRUE or FALSE in

28 The notation [x]S1 is read: Node [x] in Variable
Space S1.

their respective Clause Sets and
respective Spaces.
The common-node [q]STS1,S2,.. contains
the first appearance of its name Literal
(NL) q in all branches of the MSRTs.o
containing [x’]S1, [y’]S2, [z’]S3, … etc.
and there exist literals q’, q’’, q’’’, etc. in
Spaces S1,S2,S3,… such that:
q=M1(q’)=M2(q’’)=M3(q’’’)=… etc.

Figure 12: Illustration of Definition 10 where
ST=Space1,M0 is the trivial Mapping,
[b]STSpace1={{b,d}{e,f}} is a
MSCN,[c]Space1={{¬c}{b,d}{e,f}},
[a]Space2={{¬a}{b,c}{d,e}} for M={(c>a),
(b>b),(d>c){e>d}{f>e}}. Then it is clear that
[c]Space1=[a]Space2=[q]Space1,Space2,where
q=M0(c)=M(c). Also: [b]STSpace2 is obviously
child to both, [a]ST=BS and [a]Space2 with edge-
literals a=M0(a) and a=M(c) respectively.

S2 S3 S1

ST

X=M1(X’)

Y=M2(y’) ……

X’ Y’ Z’ ……..

Q
Figure 11: Multiple Space
 Common-Node
 (MSCN)

Abdelwahab, N.

37

37

Definition 11: Double-Sided MSCN with
respect to Literal z, Single-Sided MSCN
with respect to Literal z, trivial MSCN

An MSCN [q]space-i is called DS-MSCNz
(Double-Sided MSCN with respect to
Literal z) if ∃n1,n2	∈ MSRTs.o of 2CNF
Clause Set S, ∃xspace-j	, yspace-k:Literal,
∃M1,M2: Mapping, such that: [q]space-i is
adjacent to both n1 and n2 and
zspace-i =M1(xspace-j), zspace-i =M2(yspace-k),
where yspace-k has the opposite sign of
xspace-j, i.e., there exist at least two edge-
or branch-literals x, y from Spaces space-
j, space-k respectively and a Literal z
from the target space-i such that both
literals are translated to z within their
respective spaces and have opposite
signs. Literals x and y are also called
distinguished (c.f. Definition 4,
(Distinguished Literal)).
if ∃n1,n2	∈ MSRTs.o of 2CNF Clause Set
S, ∃xspace-j	, yspace-k, ∃M1,M2:Mapping,
such that: [q]space-i is adjacent to both n1
and n2 and zspace-i =M1(xspace-j), zspace-i
=M2(yspace-k), where yspace-k has the same
sign as xspace-j, i.e., a MSCN is formed
through only +ve or only -ve
instantiations of edge- or branch-literals
z or its images in respective spaces, z is
not distinguished, then the MSCN is
called SS-MSCNz (Single-Sided MSCN
with respect to z). [b]STSpace2 in the
example above of (Figure 12) is thus a
SS-MSCNa.

An MSCN [q] is called trivial MSCN,
(tMSCN), if ∃n	∈	MSRTs.o whose
Clause Set is a MSSB, Child([q],n)=TRUE,
i.e., [q] is formed through a newly
resolved clause in step k, who belongs to
a MSSB to which one or more of its
parents belonged in steps <k.

Concepts defined here are used mainly in
(Lemma 8), (Lemma 9-a), (Lemma 9-b)
and (Lemma 9-c)

Definition 12: Aligned Trees,
Alignment Clause

A MSRTs.o of a 2CNF Clause Set S is
said to be aligned if ∃C S, C’ derivation
of C such that:∀n MSRTs.o., S’ is
2CNFn, ∀Cx S’ the following is true:

a) SortOrder(C’, S’)>SortOrder(Cx,S’)
b) S’ is l.o.

In other words: Either C or one of its
derivations C’ are the last clauses in any
Clause Set of the MSRTs.o. C is called
Alignment-Clause.

Definition 13: Aligned Nodes,
Alignment Clause Set of S, Alignment
MSRTs.os

A node n of size M is said to be aligned
if:

a) For M<=2: n possesses a Clause
Set with an aligned MSRTs.o

b) For M>2:
(i) All nodes or sub-trees of size

M possesses Clause Sets
which are l.o.

(ii) All nodes or sub-trees of size
<M are aligned

The Set of all unique clauses and their
derivations used for the alignment of all
nodes of a MSRTs.o of an arbitrary 2CNF
Clause Set S is called Alignment Clause
Set of S (ACS). It is formally given by:
ACS=∪	 permCiÎS for all CiÎS.

Obviously, ACS cannot have more than
RCC2-SAT*M elements/clauses
containing all possible permutations of
literals in linear- or non-linear sequence.
An MSRTs.o whose nodes are all aligned
is called Alignment MSRTs.o

Abdelwahab, N.

38

38

Definition 14: Resolution procedures:
2SAT-GSPRA+, Align

2SAT-GSPRA+:

Inputs: Arbitrary 2CNF Clause Set S of size M
Output: MSRTs.o
Steps: -
1- convert arbitrary clauses in S to a.a. ones

(only sorting literals inside each clause).
2- choose a clause C0 Î S
3- convert S to a l.o. Set using CRA+ (the

version with DB-Sorting, c.f. Section III,
Lemma 8)

4- convert C0 to a SR-DAG using Convert(C0)
5- set IRT (Intermediate Resolution Tree) =

SR-DAG produced in 4
6- ∀ Ci Î S (one by one)

a. IRT=Align(IRT , Ci)
7- return IRT

Align (SR-DAG, C):

Inputs: An MSRTs.o with base-node n and S the
Clause Set of n, an a.a. 2CNF clause C
Outputs: MSRTs.o

Data Structure: List of Tuples: <Clause Set,
Node index> (called: LCS) initially empty
Steps: -
- If (MSRTs.o =FALSE-DAG)

Return FALSE-DAG
else
 If (MSRTs.o =TRUE-DAG)
 {

- Result = Convert(C)
- Store S=C in LCS in its CRA-Form,
 index is the base node of Result

 Return Result
 }

else
{ <bracket-1>
a- Update S in node n with C: S=S ∪ C
b- If (S is in LCS)

Return
SubTree(foundNodeIndex)

c- If (S is l.o.)

{<bracket-2>
- X=least Literal in S
- leftC=instSimpleC({X=TRUE},C)
- rightC= instSimpleC({X=FALSE},C)
- if (leftC=empty)

(i..e. C evaluated to TRUE via
InstSimple)
leftResult=LeftDAG(n)

 else
 If (leftC=Nil)

(i..e. C evaluated to FALSE
via InstSimple)

leftResult=FALSE-DAG
else
{<bracket-3>
leftResult=
Align(LeftDAG(n), leftC)

}<bracket-3>
- if (rightC=empty)

rightResult=RightDAG(n)
 else
 If (rightC=Nil)

rightResult=FALSE-DAG
else
{<bracket-3>
rightResult=
Align(RightDAG(n), rightC)

}<bracket-3>
- Result= MSRTs.o formed from node n, left- and
rightResult
- Store S in LCS in its CRA-Form giving it as
index the node n

- Return Result

}<bracket-2>
else (of step c-)
If (S is not l.o.)

{<bracket-2>
1- Choose a clause C0 Î S,
S’=CRA+(S), the version with DB
Sorting
2- If S’ has already been stored in LCS,
erase its entry
3- C may have changed its place due to
sorting in CRA+. MSRTs.o for all clauses
except the last one must be created
again: Let S’’=S’\A, A is the last clause
in S’
4- NewDAG=2SAT-GSPRA+(S’’),
Construct all nodes whose Clause Sets
start with S’’ again, assigning to them
NewDAG and updating LCS with
adequate information.
5- Result=Align(NewDAG,A)

6- Store S’ in LCS in its CRA-Form
giving it as index the base node of
Result
7- Return Result
}<bracket-2>

}<bracket-1>

Abdelwahab, N.

39

39

Definition 15: 2SAT Fast Generic
Pattern Resolution Algorithm

2SAT-FGPRA:

Inputs: Arbitrary 2CNF Clause Set S of size M
Output: MSRTs.o

Data Structure: List of Tuples: <Clause Set,
Node index> (called: LCS) initially empty
Steps: -
1- convert arbitrary clauses in S to a.a. ones

(only sorting literals inside each clause).
2- choose a clause C0 Î S
3- convert S to a l.o. Set using CRA+ (the

version with DB-Sorting, c.f. Section III,
Lemma 8)

4- Create base node n, Set S to be the Clause
Set of n,

5- Process n as follows:
- if (size of n > 1) && (clauses are neither

evaluated all to TRUE nor containing a
clause evaluated to FALSE))

 {<bracket-1>

(Form left- and right Clause Sets for n
instantiating the least Literal to TRUE
and FALSE respectively. Make sure the
resulting Clause Sets are l.o.)

a. X=Least Literal of S
b. leftClauseSet=

InstSimple({X=TRUE},S)
c. rightClauseSet=

InstSimple({X=FALSE},S)
d. leftClauseSet=

CRA+(leftClauseSet)
e. rightClauseSet=

CRA+(rightClauseSet)

f. Search for leftClauseSet in LCS

 if (leftClauseSet found)

leftResult=
SubTree(foundIndex)

 else

{

1-leftResult=2SAT-
FGPRA(leftClauseSet)

2- Store leftClauseSet in LCS

in its CRA-Form giving it as

index the base node of

leftResult

}

g. Search for rightClauseSet in LCS

 if (rightClauseSet found)

rightResult=
SubTree(foundIndex)

 else

if (S has only one clause C)

{

1-rightResult=2SAT-
FGPRA(rightClauseSet)

2-Store rightClauseSet in LCS
in its CRA-Form giving it as
index the base node of
rightResult

}

- Result= MSRTs.o formed from node n,
left- and rightResult
- Store S in LCS in its CRA-Form
giving it as index the node n

- Return Result
} <bracket-1>

else

if (S has only one clause C)

{

- Result = Convert(C)

- Store S in LCS in its CRA-Form
giving it as index the node n

Return Result

}

Else {

If (clauses are evaluated all to TRUE)

 Return TRUE-DAG

Else (clauses contain a clause evaluated
 to FALSE)

 Return FALSE-DAG

}

Abdelwahab, N.

40

40

III-2 Converting arbitrary 2CNF Sets
 to l.o.u and l.o. ones
Can we always convert arbitrary Sets to
s.o. or lo.o. ones? To answer this
question we need to investigate how to
convert a.a. Clause Sets29 to l.o.u. and
l.o. ones.

Lemma 1: CRA is guaranteed to convert
an a.a. Clause Set S into a l.o.u. Clause
Set. It takes O(N*M) steps30 to do so for
M = number of clauses, N = number of
variables. Moreover:
a. CRA always produces monotone

mappings (mM).
b. (x | y) iff (x<y) for literals x,y∈ Lit(S) in

any l.o. Clause Set S.
c. In sequential, clause by clause resolution:

Let x,y∈ Lit(S), S is l.o., S=2CNFBN,
x∈C1,y∈C2,C1≠C2, FIRSTC(x)=1,
FIRSTC(y)=2,
SortOrder(C1,S)<
SortOrder(C2,S)
and
∃n:Node,space-i:VS where: S’=2CNFn,
Child(n,BN)=TRUE such that:
xspace-i,yspace-i∈Lit(S’), S’ is l.o.,
xspace-i∈C1

’,yspace-i∈C2’, C1
’≠C2’,

FIRSTC(xspace-i)=1,
FIRSTC(yspace-i)=2,
SortOrder(C1’,S’)<
SortOrder(C2’,S’)
and
C1’, C2’∈S’ images or derivation of images
of C1, C2∈S then:

(xspace-i | yspace-i) iff (x | y)31

Proof: c.f. the three conditions of
(Definition 1) for a Clause Set to be
l.o.u.:

a) ∀ai,bij∈Ci+j: ai<bij
c) ∀x ∈ LIT(S), ∀C ∈ S:

if x not ∈ LEFT(x,C) then
∀y ∈ LEFT(x,C): x>y

29 Converting an arbitrary Clause Set to an
almost arbitrary one (a.a.) being a trivial exercise
needing only sorting literals inside each clause in
ascending order and taking care that clauses have
unique occurrences.
30 Steps are invocations of primitive operations
as normally perceived in complexity analysis.

d) Clauses appear only once in S
It is clear that a) and d) are fulfilled by any
output of CRA as they constitute the mere
definition of a.a. Sets. For Condition c):
Suppose some Literal L in a clause Ci={...
L ...} ∈ S' (S' = output Set) breached
Condition c): This means that L is new in
the clause sequence starting with C0 until
Ci, but there exists L' to its left where L<L'.
This cannot be the case, since any such L'
would have to appear in a row before L in
the connection matrix (step 2-b, Definition
7) and thus get a smaller index in the
renaming step 3-. For the complexity
assertion: The number of cells to be created
in a Connection Matrix is always N*M.
To show the mM property a-: ∀x,y literals
in a Clause Set: CRA’s way of giving them
new names is - as seen - to assign each one
a row in the connection matrix in the order
of their appearance and then rename the
rows by counting from 0-n, finishing up
with a strict order (c.f. Definition 7, steps
2-a, 3 and 4 as well as the example).
Therefore: If (x | y), then, unless clauses are
re-ordered, after one application of CRA:
M(x)<M(y).

For b-: (x | y) iff (x<y) in any l.o. Clause
Set. To see this, the only direction we still
need to show is: (x<y)>(x | y). Suppose in
a l.o. Set: (x<y). Either (x | y) or (y | x). In
case (y | x), this means that the first
occurrence of y comes before the first
occurrence of x and both appear in different
clauses. But then, x should have been > y
as per condition c in Definition 1 which
prescribes that in a l.o. Clause Set a new
Literal must be strictly greater than all
literals occurring to its left.
This means (x | y).

31 Intuitively: If two literals x, y belonging to
different, subsequent clauses of S, a l.o. Base Set,
have images in another l.o. Set S’ of some Space-
i, and the order of clauses in S’ preserves the
relative precedence of images of Literal x on
images of Literal y, this always means that xspace-i

proceeds yspace-i in S’. The other direction is also
true.

Abdelwahab, N.

41

41

For c-: First direction: Suppose xspace-i
appears in C1’ for the first time in step
k. X must also appear for the first time
within C1 in S in step k, because C1’ is
the image or a derivation of an image
of C1 and FIRSTC(x)=1. yspace-i appears
then in S’ in a step j>k, because
C1’≠C2’,SortOrder(C1’,S’)<SortOrder
(C2’,S’), S’ is l.o. and resolution is
sequential. Suppose now (y | x) in S.
This means that C2 must have
appeared in a step <k contradicting the
fact that C2’, its image, appeared in
j>k. Therefore it must be that: (x | y).
The other direction is similar: When (x
| y), then (yspace-i | xspace-i) cannot be the
case unless either the order of S is not
preserved in S’ or yspace-i appears for
the first time in a clause other than C2’.
Both conditions contradict the
assumptions.
(Q.E.D.)

Lemma 2: For a 2CNF Clause Set S it is
true that:
a- S is l.o. iff CRA+(S) reaches a Stable-
Set of literals equivalent to LIT(S)
b- S is satisfiable iff CRA+(S), the CRA-
Form, is satisfiable
c- S and CRA+(S) are logically
equivalent

Proof: a- Suppose S is l.o. This means
that it is fulfilling all Conditions a)-d) of
Definition 1. Any attempt to use CRA+,
i.e., rename the literals and then sort
them, must generate a Stable-Set =
LIT(S) after only one CRA- and sorting
iteration, since otherwise (i.e., if a Literal
gets a new Name/Index after such an
iteration) this would mean a breach of
one or all of those conditions. Other
direction: Suppose S reached such a
Stable-Set through application of CRA+,
i.e., CRA+ terminated. If S is not l.o.,
then it must be at least l.o.u. (because of

32 The other direction: [CRA+(S) is satisfiable
=>S is satisfiable] can be shown using similar

Lemma 1). The only reason for S not to
be l.o. would thus be that clauses are not
sorted correctly. This is not possible
because CRA+ can only become a Stable-
Set equivalent to LIT(S) if two
consecutive renaming iterations assign
literals with the same names/indices, the
first of which is followed per definition
by a sorting operation.
b- The proof is by induction on M, the
number of clauses in S.

Base-Case: M=1: For S={{a,b}} CRA+
terminates after one iteration yielding the
Clause Set S’={{a’,b’}} with a’,b’ new
Indices/Names for a,b, a’=M(a),
b’=M(b), M the mapping produced by
CRA+. Let A be an Assignment
satisfying S, A={{a=v1}{b=v2}},
v1,v2∈{TRUE,	 FALSE}.	 If	 we	 set	

A’={{a’=v1}{b’=v2}}, then S’ is
satisfied by A’, since nothing has
changed except variable names. The
other direction is similar.

Induction Hypothesis: S is satisfiable
iff CRA+(S) is satisfiable for SizeS=M

Induction step: If SizeS=M+1: Suppose
A is the Assignment which satisfies S32.
We distinguish two cases:

Case 1- S’=CRA+(S), CRA+ does not
alter the order of clauses in S. Assume
S={C0,..,CM}, S’={C0’,..,CM’}, where
CM={a,b}, CM’={M(a),M(b)}. A must
also satisfy S’’=S\CM which is of size M
and per induction hypothesis there exists
A’ satisfying S’’’=S’\CM’. The following
cases can then occur:
a- Literals a,b ∈ CM are new, i.e., a,b ∉	
Lit(S’’). M(a) and M(b) are also ∉	
Lit(S’’’) per monotone mapping
property of M. Extend A’ to include
{M(a)=v1,M(b)=v2}, where
v1,v2∈{TRUE,	FALSE} are values given to
a, b in assignment A. This extended A’

arguments and is not included here to avoid
unnecessary length.

Abdelwahab, N.

42

42

satisfies CM’ and thus also S’33,
otherwise A couldn’t be satisfying CM
(remembering that names of variables
are different in CM and CM’, but signs are
the same).
b- Either Literal a or b or both are ∈
Lit(S’’). It must be then the case that
v1,v2∈{TRUE,	 FALSE} used in
assignment A for any such a or b to
satisfy S’’ do not falsify CM, otherwise A
wouldn’t be satisfying S. Per induction
hypothesis: A’ satisfies S’’’ using, per
definition, for any of M(a) or M(b) the
same values v1 and/or v2. They can only
falsify CM’ if they falsify CM which is not
the case.

Case 2- S’=CRA+(S) alters the order of
clauses in S. Let S’={C0’,..,CM’}. Re-
arrange S such that clauses are ordered
like in S’. Call the new Clause Set S’’,
i.e., S’’={C0,..,CM}. S is, per definition,
satisfiable iff S’’ is satisfiable. Apply the
same arguments used in Case 1 on S’ and
S’’.
c- S has a CRA-Form S’=CRA+(S) and
thus S ⇔M S’, (Definition 8.3), i.e.,
∃M:Mapping such that: Apply(M,S)=S’,
S’ is the exact syntactic image of S. This
means: Any Truth Assignment A
satisfying S can be converted to a Truth
Assignment A’ satisfying S’ by simply
substituting variables x with M(x). The
other direction is also possible.
(Q.E.D.)

Lemma 3: CRA+ takes a number of
steps which is in O(M2(logM+N)). More
precisely M CRA-iterations and M
sorting operations34 (M = number of
clauses in S, an a.a Set).

Proof: (by induction on M)

33 Since the truth value of S’’’ is not affected by
the new variables
34 Assuming that a sorting operation takes
O(M log M) primitive operations.

Base-Case: M=1: For S={a,b} CRA+
takes one CRA and one sorting operation
to generate tMapping per definition
(Definition 8.4).

Illustration Case: M=235
Let S={{a,b},{d,e}}={C0,C1}

Case 1: No literals in common between
C0 and C1: In that case a<b<d<e.
S is l.o. No CRA- or sorting iterations
needed.
Case 2: Only head-Literal in common:
S={{a,b}{a,e}} for example: Same as
Case 1, S is also l.o. No CRA or sorting
needed.
Case 3: Only tail-Literal in common
(Case I): S={{a,b}{b,e}} for example:
S’ is converted after one CRA-iteration
to S={{a,b}{a,c}}, because of
Definition 7, 2a, Renaming Precedence
Condition (RPC). Thus, no sorting
needed.
Case 4: Only tail-Literal in common
(Case II): S={{a,b}{c,b}} for example:
S’ is converted after one CRA-iteration
to S={{a,b}{a,c}}, because of
Definition 7, 2a), Renaming Precedence
Condition (RPC), no sorting needed.

Resuming Base-Cases M=1,2:
Although we may not need CRA or
sorting, CRA+ takes at most one iteration
(i.e., one CRA- and one sorting
operation) to generate tMapping and to
terminate.

Induction Hypothesis: For M clauses:
M CRA-iterations (M2*N) as well as M
sorting operations (M2logM) are needed
in the worst case to make S l.o.

Induction step: For any additional
clause CM+1 = {x,y} we have the
following cases (c.f. Definition 9,
pseudo formal procedure):

35 Monotone +ve 2-SAT case is used here and in
the next Lemma (w.l.o.g.), since CRA+’s
behavior does not depend neither on Literal signs
nor on clause breadth.

Abdelwahab, N.

43

43

1. x,y are new literals not appearing
before in any Clause Ci: This case is
straightforward in that no sorting is
needed, i.e., only CRA (renaming) in
the worst case.

2. One or more literals of x,y appeared
in a previous clause: For Example:
Suppose S={{0,1} {0,2} {0,4} {0,6}
{2,8} {9,10} {11,12}} which is l.o.
adding the clause {4,6}, the following
steps are required:

a) S={{0,1}{0,2}{0,4}{0,6}
{2,8}{9,10}{11,12}{4,6}}
input

b) S={{0,1}{0,2}{0,4}{0,6}
{2,8}{4,6}{9,10}{11,12}}
sort

c) S={{0,1}{0,2}{0,3}{0,4}
{2,5}{3,4}{6,7}{8,9}}
CRA, S in step c) is already l.o.

For a Clause Set of size M: S={{a,b}
{b,…} {d,…}…} where, as per
induction hypothesis, it is assumed that it
is l.o. and we add a clause containing one
or more literals which appeared before,
we note that S is l.o.u. A sorting step is
what is required to align the new clause
to its right place. If this step is done, then
another CRA-step guarantees l.o.u (per
Lemma 1). This means that we need an
additional CRA (renaming) as well as a
sorting step for this case.

Resuming the induction step: One
additional CRA- and one additional
sorting step is needed in the worst case
for M+1
(Q.E.D.)

This section concludes with a Lemma
showing that any a.a. Set can be
converted to a l.o. Set, i.e., application
of CRA+ on any a.a. Set always
terminates yielding the right result.

36 CRA renders S ∪ C l.o.u., i.e., any new literal
v of C is > LEFT(v, C) after such an iteration.

Lemma 4: CRA+ terminates always
converting any arbitrary 2CNF Clause
Set S of size M to a Stable-Clause Set.

Proof: (by induction on M)

Base-Case M=1: For S={{a,b}} as seen
in the Base-Case of (Lemma 3) CRA+
terminates after one iteration yielding the
Clause Set S’={{a’,b’}} where a’,b’ are
new indices/names for a,b. S’ is stable.

Illustration Case M=2: Let
S={{a,b}{x,y}}. As seen in all Base-
Cases for M=2 of (Lemma 3): One
iteration of CRA and one sorting
operation converts S to a l.o. Set. This
means any further iteration of CRA+
yields a Stable-Set (per definition of
CRA+) letting the algorithm terminate.

Induction Hypothesis: Application of
CRA+ for a number of iterations k on a
2CNF Clause Set S of size M converts S
to a Stable-Clause Set (i.e., CRA+
produces M stable clauses after k
iterations).

Induction Step: Per induction
hypothesis for S having M+1 clauses,
there are M stable clauses in iteration k.
Let C={x,y} be the clause which is not
stable. After step k the position of C
cannot be before any other stable clause
C’={i,j}, e.g., as in {{a,b}…{x,y}
{i,j}…}, because this would mean that
CRA-operations will have to change
indices i,j to new ones for C’
contradicting its stability assumption,
i.e., C has to be the last clause in S.
In that case, even if literals in C would
not fulfill the l.o. condition for whatever
reason other than sorting (because C is
already in its place), further CRA-steps
in iterations >=k guarantee to convert C
into a stable clause (per definition of
CRA+)36 causing CRA+ to terminate
with a Stable-Clause Set of size M+1.
(Q.E.D.)

Abdelwahab, N.

44

44

III-3 Way of work of 2SAT-GSPRA+
The main difference between 2SAT-
GSPRA and 2SAT-GSPRA+ is that the
latter uses CRA+ to convert Clause Sets
to l.o. ones. It is necessary to understand
what 2SAT-GSPRA+ really does when it
imposes the l.o. condition on clauses.
Central in this respect are the following
points:

i- Counting the number of new
nodes created in each step is essential.
As resolution is sequential, a new
clause resolved in such a step has to
traverse all nodes of the previous IRT
if necessary (c.f. Figure 10 for an
illustration). It is therefore clear that,
unless nodes are left untouched or are
copied (i.e., Splits occur), the
contribution of the new clause is either
to augment sizes of already existing
nodes or to add new size-1 ones.

ii- It is also imperative to
understand how 2SAT-GSPRA+
recognizes equivalent Clause Sets so
that it is not obliged to repeat similar
calculations. The equivalence notion
adopted in [Abdelwahab 2016-2] is
structural (algorithmic), i.e., two
Clause Sets are equivalent only when
their generated resolution trees are37.
As we are always trying to minimize
nodes in generated trees, this notion is
sufficient for our purpose. 2SAT-
GSPRA+ implements it (compare with
Definition 14, Align function, Point b,)
by requiring a Clause Set to be stored
in the LCS list only when CRA+ is
applied to it. This has the advantage of
normalizing all stored Clause Sets so
that their sub-trees can be retrieved

37S1={{a,	¬b}{b,d}{¬d,e}},
S2={{¬d,e}{b,d}{a,	¬b}} are for example
considered to be different from the structural
point of view although they are logically the
same.
38 In this present work RPC is restrained to HLs
only while in [Abdelwahab 2016-2] it is applied

easily when encountered again during
resolution, remembering that all
resolution steps may require using
CRA+. [Abdelwahab 2016-2] calls this:
(CRA-form).

iii- Sorting condition b) in
(Definition 1) prescribes distinguishing
+ve and –ve literals of the same
variable while ordering a Clause Set
without giving any preference to the
best way of doing that, leaving it to
implementations of CRA+. Some
implementations may have the effect of
building SBs and tCNs as seen in
(Definition 4) and (Figure 7) which
may split. It is shown here that this
situation can always be avoided
without disturbing the essential (RPC)
condition of CRA by appropriately
choosing which sign to prioritize while
applying the (DB Sorting) Condition38.

The following lemmas allow us to get a
more precise picture of the above ideas.

Lemma 5 (Expansion of MSRTs.os):
a- ∀n1,n2 nodes ∈	MSRTs.o: if n1,n2 are
not directly connected in steps <=k then
they cannot be directly connected in
steps >k, if the sort order of their Clause
Sets is not altered, except in the trivial
case when the new clause belongs to a
block, parents of n1,n2 were instantiating
in steps <=k and n1, n2 become
equivalent (tCN, tMSCN).

b- ∀M>1: A node [q] of size M is
CN/MSCN iff ∃CN/MSCN [q’] of size
M-1 augmented in size by a clause C
such that: [q]=[q’]
c- Let up1,upj be upper bounds of nodes
generated during the whole process of

to all literals. There, a stronger property than the
one seen in Lemma 8 is shown, namely: That
appropriately sorting blocks to avoid tCNs (there
called the l.o.s condition) produces the same
amount of unique nodes as not doing any extra
sorting. This was necessary there to imply that
tCNs and their Splits don’t harm the near-to-
minimal node counts of GSPRA+ trees.

Abdelwahab, N.

45

45

resolution in size-levels 1 and j,
respectively, where 1<j<=M. If Splits are
not accounted for in any size-level j,
then: upj<=up1

Proof:
a- When 2SAT-GSPRA+ is applied on a
BS, it uses (LLRBS) in the Align
Algorithm. This rule is applicable within
a space as well as between spaces in the
following way: If nodes n1 and n2 belong
to different spaces and were not directly
connected in step k, then, unless the sort
order of their Clause Sets is not altered,
they cannot be directly connected in
steps >k, because newly resolved clauses
don’t affect old results of an application
of the least-Literal-rule, i.e., least literals
in old nodes remain the same for l.o.
Clause Sets (c.f. Definition 4 and Figure
7 for an illustration). tCN and tMSCN
exception cases are explicitly dealt with
in (Lemma 8) below.

b- ∀M>1: If ∃CN/MSCN [q’] of size M-
1 constructed in steps<k and augmented
in size by a clause C in step k such that:
[q]=[q’], then per (Definition 4), [q] is a
CN/MSCN and its size is M. Other
direction: We need only to investigate the
case when a node [q] of size M was not a
CN/MSCN in steps <k and became
CN/MSCN in step >=k. As per a- this
cannot happen unless the sort order of one
of at least two nodes involved is altered.
Let [q’] be the node of size M whose sort
order is changed in step k and whose SR-
DAG is completed in steps>k such that
2CNF[q]=2CNF[q’]. This can only happen
in 2SAT-GSPRA+ if [q’], when passed to
the Align-Algorithm is not found to be
l.o. and CRA+ is used (Definition 14,
bracket-2, steps: 1-7). In this case: The
last clause A of the re-arranged Clause
Set is separated (step 3) and the SR-DAG
of node [q’] is formed again, first with
2CNF[q’]= 2CNF[q]\A (step 4), before a
recursive call of Align is attempted (step
5). In those first steps: Size[q’]=M-1.

Since: 2CNF[q’]=2CNF[q]\A and as per
(step 4) all nodes whose Clause Sets
begin with 2CNF[q]\A, i.e., [q] as well, are
reconstructed: [q’] must have been a
CN/MSCN of size M-1, before its size is
augmented by A. When Align is called
then in (step 5) with the last clause A,
Size[q’]=Size[q]=M which was to be
shown.

c- If Splits are not accounted for at any
size-level j>1, then: Per (Definition 14)
of 2SAT-GSPRA+: A node can have in
any step only one copy which either
remains at such a level-j or is propagated
up one level to become part of level-j+1,
but not both. Recall that this is not like
the case of a Split, where one copy of the
node remains as it is and another copy (or
more) is resolved with a new
clause/Clause Set moving up the
hierarchy (recall Definition 6, Splits).
Hence, we can show the property using
induction on j: 1<j<=M as follows:

Base-Case: For j=2: Since up1 is the
upper bound of nodes generated in size-
level 1 during the whole process of
resolution, the worst case is that all up1
are added to level 2. Since Splits are not
counted at level 2, they must be also the
only nodes added at that level. Therefore:
up2 <= up1

Induction Hypothesis: upj<=up1 for
size-level j, j>1

Induction Step:: Because any node
formed at level j+1 at any step of the
resolution can either come from the
lower j-level, or formed via Split and we
don’t count Splits: upj+1 cannot be > upj,
which means upj+1<= upj and thus per
induction hypothesis upj+1<=up1
(Q.E.D.)

Lemma 6: (Aligned MSRTs.o Base
Cases) All size 1,2 nodes of any
MSRTs.o of a 2CNF Clause Set S
produced by 2SAT-GSPRA+ are aligned.

Abdelwahab, N.

46

46

Proof: For size 1 nodes it is clear that the
MSRTs.o representing any single clause
is aligned per (Definition 12) with the
single clause itself being the Alignment-
Clause. For size 2 nodes of the form
S={{a,b}{x,y}} let's recall that 2SAT-
GSPRA+ converts any such Clause Set to
a l.o. Clause Set using CRA+ (step 3,
Definition 14). This leads to the
following cases:

Case 1 (Figure 13): No literals are
common between the two clauses. {x,y}
is then the Alignment-Clause

Case 2 (Figure 14): There is one Literal
in common independent of the specific
place of this Literal. Because of RPC of
CRA (c.f. Definition 7, 2-a), all Clause
Sets will be converted via CRA+ to the
form {a,b}{a,y} which has {a,y} as
Alignment-Clause.
(Q.E.D.)

Figure 14

b
a {b}{y}

{a, b}{a,y}

TRUE
{y} FALSE

TRUE

FALSE

{b11}{x,y}

{a1, b11}{x,y}

{x,z}
{x,y}

a1
b11

FALSE

Figure 13

x
TRUE

{y}

y
TRUE

FALSE

Abdelwahab, N.

47

47

Lemma 7: (Alignment MSRTs.os)
2SAT-GSPRA+ produces MSRTs.os with
aligned nodes39 and if Splits are not
counted, then for the whole process of
resolution: The total number of
generated size-1-level nodes cannot
exceed RCC2-SAT*M2

Proof:
1. Alignment MSRTs.os (Induction on

M)
Base Case: M=3-sized MSRTs.os are
aligned because their M=2-sized
nodes or sub-trees produced by
2SAT-GSPRA+ are all aligned
(Lemma 6) and (as per Definition 13)
their M=3-sized nodes or sub-trees
are l.o. The fact that all size M=3
nodes or sub-trees are aligned makes
in the same way all size M=4 nodes
aligned and so forth. Inductively: All
M-sized nodes are aligned because all
their M-1-sized nodes or sub-trees are
aligned and their M-sized nodes of
sub-trees are l.o. This implies that any
final MSRTs.o is an Alignment
MSRTs.o.

2. Size-1 level nodes created in any step
k<=M can only come from ACS and
ACS cannot have more than RCC2-

SAT*M per (Definition 13) i.e., the
total number of generated size-1
nodes for all steps cannot exceed
RCC2-SAT*M2

(Q.E.D.)

Lemma 8: ∀SB, DB, tCN such that
SB⊆DB and tCN formed in SB: tCN can
always be avoided by appropriately
choosing the DB Sorting Condition.
Similarly: tMSCNs can be avoided as
well.

Proof: According to (Definition 1), a
block is called DB if -ve and/or +ve

39 As per (Definition 12) and (Definition 13):
There is a subtle difference between aligned
MSRTs.os and Alignment MSRTs.os. While the

instantiations of block Literal a result in
Sets S1, S2 respectively and either S1 ⊆
S2 or S2⊆ S1. Figures 15 below shows an
example for such a dissymmetric block
Ba={{a, b}{¬a, b}{¬a, c}{a, c}{a, d}}
(SB={{a, b}{¬a, b}{¬a, c}{a, c}})
sorted in two ways: One prioritizing
clauses with –ve occurrences of a (Figure
15a) and the other prioritizing those with
+ve occurrences (Figure 15b). Only the
first, relevant parts of the resolution trees
are shown. An SB as well as a tCN is
formed in the first case and bound to split
in any further step, while the second case
avoids such formation by utilizing the
dissymmetry in clause {a,e} to prioritize
+ve occurrences of a. Clauses with –ve
occurrences of the block Literal just fill
then the TRUE leaf node in any further
step. As (DB Sorting Condition) does not
affect any special condition used in
CRA+ (especially the RPC condition in
Definition 7 which only relates to HLs
set here to block Literal a), a
constellation like (Figure 15b) can
always be reached w.l.o.g. by letting
clauses with the most common block-
literal-sign (in Figure 15b: +ve) appear
before the others in the sort order.

former represent trees with only one clause or its
derivation entailing all Clause Sets, the latter
represent trees in which all nodes were aligned,
not necessarily with the same clause.

Figure 15-a

Figure 15-b

Abdelwahab, N.

48

48

What if Ba is a MSB, i.e., some of its
Clause Sets belong to more than one
Space (Definition 10)? It suffices to
observe that tCNs cannot be formed in
blocks scattered between different,
mutually exclusive branches of the tree.
I.e., the constellation for Ba in (Figure
16) is not possible: The reason being that
branch Literal a is the head of rank-2
clauses occurring also in the base Set BS.
Thus, to scatter them between different,
mutually exclusive branches an
additional variable would be needed,
contradicting the fact that BS is a 2CNF
Clause Set. Therefore: Ba must occur in
one and only one node which might be
shared by many branches coming from
different spaces. But then: Even if Ba or
any of its Clause Sets were parts of more
than one space, the same arguments used
above would apply, if one of those
spaces is chosen for the node in which Ba
is occurring. In other words: When
2SAT-GSPRA+ reaches this node it can
apply DB-Sorting in CRA+ as instructed
in (Definition 14) and the proof of this
Lemma without any additional effort.
(Q.E.D.)

40 The notation [3] stands for [q], q=3.

III-4 CN-Splits in MSRTs.os
The most important contributions of this
work are the observations related to
Splits of resolution trees on which l.o.
conditions are imposed. As mentioned
before: Only CN-Splits need to be
thoroughly investigated. The other type
of Splits, N-Splits (c.f. Definition 6),
cannot occur during resolution work of
2SAT-GSPRA+, since no node n
containing Clause Set S and formed in
step k, can be duplicated in steps >k,
while S is resolved with a clause whose
least-Literal is new and has an index
strictly smaller than all or any indices of
head-literals in S. Such a case would be
a breach of the l.o. condition imposed by
2SAT-GSPRA+ on all Clause Sets of all
nodes (this is formally shown below in
Lemma 9-b). As for CN- as well as
MSCN-Splits, the following two cases in
(Figure 17 and Figure 18) show practical
situations occurring during resolution of
l.o. Clause Sets, motivating the more
abstract investigations of the Lemma 9.
In (Figure 17), SS-MSCN3 is formed
through instantiation of Clause Sets
{{¬2,3}} and {{2}{¬2,3}} by
substituting TRUE for Literal 2. It is
clear that MSCN [3]40 can be augmented
in size by adding additional clauses of
the form {¬2, C} to the BS. A clause {2,
x}, on the other hand, does not have any
effect on [3], since it disappears from [3]
the moment it is added to {{¬2,3}} and
{{2}{¬2,3}}, i.e., continuing the
current instantiation block B2 in BS
either augments the size of MSCN [3] or
doesn’t have any effect on it. If we
attempt to split this node using clauses of
the form {1, y} or {¬1, E} there is yet
another restriction: The fact that BS is
l.o. cannot allow any new blocks Bx
starting after B2 to contain: x<2.
Therefore: [3] cannot be split in any
further step.

Figure 16

{a,b}{a,c}… {a,b}{a,c}..

a a

{b}{c}…

Abdelwahab, N.

49

49

In (Figure 18), DS-MSCN2 Splits the
moment block B1 is continued in any
way in the BS, i.e., when clauses of both
forms {1,x} and {¬1,x} are resolved.

The only way to augment the size of [2]
is by starting a new block Bx which has
to fulfill x>1, because of the l.o.
condition imposed on the BS. However:
When such a block starts, [2] cannot be
split in any further step, since no more B1
or B0 clauses are permitted. Are those the
only possible cases of CN/MSCN Splits?
Or are there other situations in which
Splits can occur after MSCNs are
augmented to big sizes? This is answered
by the next central Lemma which
investigates all possible situations
encountered when Splits are attempted.

Lemma 9: MSRTs.os formed by 2SAT-
GSPRA+ during resolution of a 2CNF
Clause Set have the following properties:

a. CNs and MSCNs containing
clauses belonging to the BS
or their images cannot split.

41 Reads: The first appearance of an image of a
in space-i occurs after the first appearance of an
image of l in any Clause Set S’ of the same space.

b. N-Splits cannot exist, but
Rank-1, size-1 CN/MSCN
Splits can.

c. Rank-1, size-1 CNs and
MSCNs which are not tCNs
or tMSCNs and which are
augmented to sizes>1 in step
k, cannot split in steps >k.

Proof:
We recall the generic form of a MSCN
[q]STsp1,sp2,sp3,.. (Figure 19) which is a
generalization of a CN and shall be used
here w.l.o.g. and which - as opposed to
tMSCNs - was not formed in a
symmetric block. Its edge- or branch-
literals can be either distinguished or not
(c.f. Definition 10, Definition 11, Figure
12):

a- If the size of [q]STsp1,sp2,sp3,.. gets
augmented by a rank 2 clause
C1’={a’, b’}ST in step k, then,
obviously, there exists a clause
C1={a, b}∈BS and a mapping M
such that: a’=MST(a), b’=MST(b),
i.e., C1’ is an image of C1. In this
step k: All literals of C1 and all
their images were new in all
branches and spaces leading to
the MSCN per Definition 10, i.e.,
∀i,lspace-i,S’, where lspace-i is a
branch- or edge-Literal of
[q]STsp1,sp2,sp3,., S’ Clause Set of a
parent node containing lspace-i:

lspace-i | aspace-i41

Since all Clause Sets and all nodes are l.o., this
means also that lspace-i < aspace-i according to
(Lemma 1-b).

Figure 17: SS-MSCN3

 (....){.., q,...}Sp1

aST=M1(x)
cST=M3(z)

 {..,q,…}..Sp3

{ }ST

 (....){ }Sp2

bST=M2(y)

Figure 19

::

Figure 18: DS-MSCN2

Abdelwahab, N.

50

50

Per (Lemma 1-a) we have:
M(lspace-i)<M(aspace-i) -1

To be able to split [q]STsp1,sp2,sp3,..

in any step>k, a subsequent
clause C2={x, y}∈BS must
traverse some or all branches and
spaces leading to the MSCN and
form two different Derivations
(Definition 6, CN-Split). For at
least one of those Derivations:
Some parent node p, Clause Set S
of p, space-i and edge- or branch-
Literal lspace-i must satisfy:
xspace-i=lspace-i or yspace-i=lspace-i
where C2’={x, y}space-i.
Substituting in above formula -1
we have: M(xspace-i)<M(aspace-i) 42
On the other hand: As per the l.o.
condition imposed on BS: a<=x
and we have two cases43:
If a=x then xspace-i=aspace-i and C2’
is added to S and augments the
size of the MSCN instead of
splitting it.
If a<x, then as per (Lemma 1-b):
(a | x), because BS is l.o., such a
BS may have only one of the
following two generic forms
which realize the requirement
that the first appearance of
Literal x comes after that of
Literal a44:
{..{..,a}..{r, x}..{s,	¬x}…{a, b}…{x,y}…}
 – 2

42 The same arguments hold if yspace-i is used
instead of xspace-i or if C2 is a unit clause. Those
cases are omitted here to avoid unnecessary
length.
43 In [Abdelwahab 2016-2] the ‘<’ relationship
alone is used to show a similar contradiction for
the 3CNF case. The reasoning shown there,
which is equally valid here and may be

considered a shorter version of the proof of

Lemma 9-a of this work, goes, informally, as
follows: “If a MSCN is augmented in size by an
image of a clause C from the BS, then all literals
of C or their images must be ‘>’ any branch- or
edge-literals of the MSCN. Since BS is l.o.: Any
clause D from the BS, coming after C, can only
possess literals which are ‘>=’ the HL of C, i.e.,

Or
{…{a, b}…{x, y}…} – 3
We will show in what follows
that both forms lead to
inconsistency with respect to the
given case assumption. To see
this: BS in form-3 satisfies, per
Lemma 1-c for any space-i:
(aspace-i|xspace-i) and thus also:
M(aspace-i)<M(xspace-i), per
monotone property of mappings.
Contradiction. Note that {x,
y}space-i can only come before {a,
b}space-i when it is ‘pulled’ by a
clause {.., x}space-i appearing
before {a, b}space-i In that case:
Clauses are re-arranged through
renaming to guarantee l.o. as
shall be seen. However: Because
x appears in BS for the first time
in {x, y} and not as a TL in any
clause {.., x} prior to {a, b} such
a situation cannot happen and the
relative position of x or any of its
images to an image of Literal a in
an arbitrary space remains the
same for this case.
By contrast: If BS is of form-2,
this means that in some step>k it
may be that: Either Ba comes
before Bx or vice versa.
Constellations like:
S={..{x}..{a,b}..{x,y}..}space-i or
S={..{¬x}..{a,b}..{x,y}..}space-i

also ‘>’ branch- or edge-literals of the MSCN.
To split a MSCN, however, there needs to be at
least one branch- or edge-Literal of the MSCN
‘=’ to a Literal in D. Contradiction” In this work
the precedence relation ‘|’ is used to allow a
thorough investigation of permutation
possibilities of BS, leading all to the same
contradiction as well. For 3CNF a lot more BS
cases are involved, explaining why ‘|’ could not
be used there.
44 Because of the l.o. condition, any l.o. Clause
Set cannot have a form in which blocks Ba or Bx
are interrupted like in: {..{a,
z}..{..,x}{a,b}{x,y}} or
{..{..,a}..{x,..}{a,b}{x,y}} for example.

Abdelwahab, N.

51

51

which are both not l.o. To make
S l.o. in such a step, clauses are
re-arranged, literals renamed and
the sub-tree reconstructed by
2SAT-GSPRA+ such that:
(i)-{{x}..{x, y}}space-i or
(ii)-{{¬x}..{x, y}}space-i comes
either before or after {a, b}space-i.
If {x, y}∈Bx comes after Ba in a
space-i, the situation is similar to
Form-3 discussed above and
leads to a contradiction, when a
split is attempted. The MSCN is
augmented, since {a<x}space-i.
On the other hand: If {x, y}∈Bx
comes before Ba in any one or
more Spaces, it must be the case
that only one Derivation of {x, y}
is generated, otherwise the
MSCN would split, before it is
augmented contradicting the case
assumption.
In Summary: Because of the l.o.
condition which prescribes that
instantiation blocks cannot be
interrupted (c.f. Footnote 44),
Clause C2={x, y}∈BS in Form-2
or Form-3 as well as all its
possible derivations can only
either augment the size of the
MSCN or leave it untouched, but
not split it.
Same Arguments apply for unit
(rank-1) clauses C1={a}∈BS
which have images in
[q]STsp1,sp2,sp3,.. 45.

b- (Figures 20) shows a Split of a
rank-1, size-1 MSCN occurring

45 The intuition behind this central observation
of Lemma 9-a is the following: When a clause
C∈BS has an image C’ in a formed MSCN, then,
per definition, all its literals and/or images of
literals must have been new with respect to
branches and edges leading to the MSCN as well
as literals in Clause Sets of parent nodes. In that
case: Any attempt to split the node using another,
subsequent clause D∈BS will be in vain, because
of the l.o. condition imposed on BS by 2SAT-
GSPRA+ which prescribes either that literals

in the MSRTs.os for
S={{0,1}{0,2}{1,2}{1,3}}.

To show that N-Splits cannot
exist: Suppose they do exist, this
means - per definition of a Split
(Definition 6) - that: ∃S’:2CNF
Clause Set such that: For some
n1,n2:Node∈SR-DAG, S1 is
2CNFn1, S2 is 2CNFn2, n1≠n2:
S’⊆ S1, S’⊆ S2 and ∄n:
Child(n,n1)=Child(n,n2)=TRUE
(i.e., there are no common sub-
trees between n1, n2, but there is
a common sub-Set of clauses).
This means also: Neither n1 nor
n2 nor any children of them were
CNs/MSCNs before (S’ was not
the Clause Set of a CN/MSCN).
Let F={..}+C+D+S, be the l.o.
2CNF Clause Set whose
instantiation results in a sub-tree
like in (Figure 20c) in which S is
a Clause Set, S’ a Set containing
Derivations of clauses in S46,

and/or images of literals in D be as new as those
of C or that they be ‘pulled’ by TLs occurring in
clauses before C, contributing thus to the
formation not the splitting of any MSCN
augmented in size by C.
46 Clauses C, D whose images are not common
between the two involved nodes may appear in F
either before or after or bracing Sub-Set S, the
origin of S’. F={..}+S+C+D, assumes S is
resolved to create S’ before C, D. It relates,
therefore, to CN- not N-Splits and is dealt with,

Figure 20b

Abdelwahab, N.

52

52

S1=D’+S’ (left node n1) and
S2=C’+S’ (right node n2), where
C,D∈F and C={x, y}, D={a, b}.
C’ and D’ are Derivations of C,
D and C’,D’ as well as any other
Derivations of C,D ∉S’,
C’≠D’47.
Then: If L is the least Literal used
to instantiate F:
Case-1, L≠x: C’=C should have
been ∈S1 as well as ∈S2 which
means C’∈S’, since in the left
node C’≠D’. Contradiction.
Case-2, L=x: We distinguish
three cases:
i- x≠a, x∉D: D’=D should have
been ∈S1 as well as ∈S2 which
means D’∈S’, since in the right
node C’≠D’. Contradiction.
ii- x=a, x∈D: C’={y}, D’={},
D’’={b} are left- and right-
Derivations of D. Then:
S2={y}+{b}+S’, which
contradicts S2={y}+S’, because
D’’={b}∉S’.
iii-	G = I,¬G ∈D: C’={y},
D’={b}, D’’={} are left- and
right-Derivations of D. Then:
Because F is l.o., x=a was least
Literal in F: Both y, b must be <=
any literals L∈S’. This means
that clauses {y} and {b} are
going both to appear and get
instantiated before any clauses in
S’ in both branches of the tree
({b} in the left branch, {y} in the
right branch)48. This instantiation

indirectly, in the other two parts of this Lemma
showing that such a Split can only occur if
rankS’<2 (Lemma 9-a) and SizeS’=1 (Lemma 9-
c). Form: F={..}+C+S+D is basically a
combination between F={..}+C+D+S, the
investigated one, and F={..}+S+C+D, i.e., does
not provide substantially different insights and is
therefore skipped here to avoid unnecessary
length.
47 For showing the result it is actually sufficient
to consider the difference between S1 and S2
constituting of only one clause (i.e., putting in the

creates a common sub-tree
between nodes n1, n2 whose
Clause Set is S’ contradicting the
definition of a Split.

c- Suppose [q]STsp1,sp2,sp3 is a MSCN
which is augmented in size in step k by a
clause C’. We have just shown that if C’
or images of it are ∈BS, then no Splits
can occur in any steps >k. What about the
case where C’ is a unit clause, say {z},
but ∉BS and there are no clauses D’	 in	
the	Clause	Set	of	 the	MSCN such that
D’ is image of a D∈BS? Augmenting the

size of [q]STsp1,sp2,sp3 with such a C’ in
step k means that there is a Literal L∈	C,	
where	 C={¬L, S}∈BS such that all
instantiations of C through branches
leading to [q] agree on its truth value,
otherwise a Split would occur in this
step. L is a (Non-Distinguished Literal),

argument above either D’={} or C’={}), if we
bear in mind that 2SAT-GSPRA+ is a sequential
Algorithm and Splits are therefore always
formed in a single step in which only one clause
is processed.
48 This remains the case even if CRA+ is used,
since the (RPC-condition) has no effect on unit
clauses. The reader may have noticed that the
argument used in Lemma 9-b is independent of
renaming and variable spaces and relates only to
the l.o. condition and the application of the Least
Literal Rule on a Clause Set.

L

F: …+C+D+S, C={x,y}

 N1: S1=D’+S’ N2: S2= C’+S’

Figure 20c

t
N4: …{¬&, '}

...
y

¬x

[]+{z}

N2:…{¬&, '}

Base-Node:...{¬&, '}

 N1: …{¬&, '}

x

y
y

Figure 21a: step k

N3: …{t}{¬&, '}space-i

Abdelwahab, N.

53

53

because distinguished ones like x in
(Figure 21a) lead to different
instantiations for different branches, i.e.,
Splits, per definition. It is not a Literal
like t which, although non distinguished,
appears only in some, not all branches of
the tree. Such a Literal t would also
create dissymmetry and hence Splits
when C is instantiated. L is called a
CNAL (Definition 4). The Argument
below amounts to showing that, in case
such CNAL L is used to augment the size
of [q]STsp1,sp2,sp3 in any step, no Splits can
occur in furtherance, unless Clause Sets
of the form:
{..{..<Literal i>..} {..no < Literal i >..}

{..< Literal i >}…} – wrong-form
are allowed for <Literal i>, used for
splitting the MSCN, a situation which, in
the studied cases, leads to inconsistency
between imposed l.o. conditions on all
sets (including BS) on the one hand and
the to-be induced Split49 on the other.
Intuitively, the Argument goes as
follows: If CNAL L augments the size of
the MSCN through a clause, say
C={¬L, S}∈BS, then L cannot be used to
split the same node in any further step,
because any clause E containing L and
coming after C in the BS can either
agree with C in the sign of L and shall be
thus augmenting the MSCN, not splitting
it, or disagree and in that case it leaves
the MSCN untouched. If on the other
hand a <Literal i >, different from CNAL
L, is used to split the MSCN, i.e., E={i,
j}, its first appearance in the BS must
come before the instantiation Block of
CNAL L, because otherwise <Literal i>
would be greater than all branch- and

49 Note that Clause Sets similar to wrong-form
are not always breaching l.o. conditions. For
example: S={{0,1}{0,2}{1,3}} (putting <literal
i> = 1).
50 The shown two cases are the only ones,
because <literal i> which causes the
contradiction may here be anyone of the non

edge-literals of the MSCN, including
CNAL L, per the l.o. condition of BS,
and thus not able to split the node. A
block headed by <Literal i> cannot be
interrupted as in the above wrong-form,
which leaves then only one constellation
of the BS to be thoroughly investigated
in which <Literal i> is a TL of some
clause before C such as:

{..{a, i}..{¬L, '}…{i, j}…}
Although such a constellation is l.o.,
where a<i<L<z, instantiation of least
literals by 2SAT-GSPRA+ necessarily
results in the following non l.o. form:

{..{i}..{¬L, '}…{i, j}…}
In any space, the conversion of this form
to l.o. (similar to what we have seen in
Lemma 9-a) ‘pulls’ the clause E to a
position in which it can only produce one
single Derivation through all spaces and
contribute to the formation of the MSCN
rather than to splitting it.
Formally, we distinguish the two only50
cases:

CNAL literals x (first case)/y (second case) or t.
With respect to what needs to be shown: Those
literal types are similar. They: 1- must disappear
when the MSCN is augmented in step k and 2-
can theoretically cause Splits in steps>k. The
argument shown uses <literal i>=t to illustrate
the idea w.l.o.g. t can either appear before or after
the CNAL.

t

N4: …{¬&, '}

...
y

¬x

[]+{z}

N2:…{¬&, '}

Base-Node:...{¬&, '}

 N1: …{¬&, '}

x

y
y

Figure 21a, step k

N3: …{t}{¬&, '}space-i

Abdelwahab, N.

54

54

Case 1 (step k)- CNAL L=y
appears in BS after <Literal i>
i.e., (x | y), (t | y) and thus also
x<y, t<y, since BS is l.o. (Figure
21a).
To split [q]STsp1,sp2,sp3 using t or
any of its images in a step>k and
space-i, two possibilities may
occur with respect to Clause Set
S={..{t}{¬E, S}}space-i of node
N3:
a) S becomes =

{..{t}{¬E, S}{t,z’}}space-i,
then either {t} was already
∈BS and thus an image of S
is ⊆	BS indicating a breach of
the l.o. condition, because t
must then be both <y and >=y
(per l.o.) or there exists a
clause D∈BS such that:
D={a, t}. But then the BS
contains a subset of clauses
or images of the form
{..{a,t}..{¬E, S}..{t,z’}..}
where t>=y also leads to the
same inconsistency.

b) S becomes =
{..{t}{¬E, S}{z’, t}}space-i.
As t>z’>=y, this means that
we have a contradiction for
all possible cases of the BS
like in a)

Case 2 (step k)- CNAL L=x
appears in BS before <Literal i>
i.e., x | y, x | t and x<y, x<t, (Figure
21b), we have ∀i:tspace-i<zspace-i, as
well since {z}space-i must augment
the size of the MSCN.

51The arguments used in [Abdelwahab 2016-2]
for the corresponding 3CNF case amount to
showing that Clause Sets similar in form to:
{..{t}..{¬x,'}..{t,z’}..}will always occur in
parent sets of [q], if such a node is supposed to be
augmented first in size by a CNAL z, then split
using t, consistently breaching the l.o. condition
and requiring re-arrangement of clauses by CRA+.
To completely avoid the impression that this re-

As before: To split [q]STsp1,sp2,sp3 using t
or any of its images in a step>k and
space-i, two cases may occur with
respect to Clause Set S={..{t}{S}..}space-i
of node N3:

a) S becomes = {..{t}{S}..{t,z’}}space-i, then
either {t} was ∈BS and in that case
{..{t}..{¬x,S}..{t,z’}..}⊆	BS is a breach
of the l.o. condition51 or
{..{a,t}..{¬x,S}..{t,z’}}⊆BS and we
have to consider two possibilities:

∀i:(a | x)space-i: In that case BS has only one of
the two forms52:
 {..{a,t}..{¬x, '}..{t,z’}..}- form1
Or
 {{r, a}..{s,x}..{a,t}..{¬x,'}{t,z’}}- form2
Form1 leads to a contradiction with the
case assumption, since x appears for the
first time in {¬x, S} and is thus per l.o.
condition > all literals to its left including
t according to (Definition 1-c).
Form2 needs to be transformed by
2SAT-GSPRA+ to S={..{t}{S}}space-i
in steps<= k according to case
assumption. In this form r,s must be
<a, x, t as per l.o. condition of BS.
This transformation, which creates
intermediate spaces, can only be

arrangement may lead to the same node-count as
the one obtained when Splits are allowed, the
arguments used here reflect on the original BS,
rather than any arbitrary parent Set, showing that
all possible l.o. BS forms (used by 2SAT-
GSPRA+) for the constellations shown in Figure
21 cannot allow – without contradiction - first
augmenting the size, then splitting such a [q].
52 C.f. Footnote 44 in point a- of this Lemma.

t

...

(
N2:…{z}

Base-Node: …{¬(, '}

 N1:…{z}

x

y

¬y

Figure 21b: step k

N3: {…{t}{'}…}space-i

(

[]+{z}

Abdelwahab, N.

55

55

done - using the least Literal rule -
as follows:
Suppose r<s, then form2 yields two
sub-sets:
{{s, x}..{a,t}..{¬x,'}{t,z’}} - subset1
{{a}..{s,x}..{a,t}..{¬x,'}{t,z’}} - subset2
Because subset2 is not l.o., CRA+
converts it giving a form where {a}
and {a, t} are joined in one block Ba
after which clause {t,z’} appears, i.e.:

{{s,x}....{¬x,'}..{a}{a,t}..{t,z’}}space-j - subset2’
Thus, in such a space-j: zspace-j<tspace-j
contradicting the case assumption as
well as (a | x)space-i.
Subset1 yields when resolved two
additional Clause Sets:

{..{a,t}{¬x,'}{t,z’}} - subset3
{{x}..{a,t}..{¬x,'}{t,z’}} - subset4

Subset3 is similar to form1 and leads
to a contradiction with ∀i:tspace-

i<zspace-i. Subset4 needs to be
converted to l.o.:

{..{a,t}..{t,z’}..{x}..{¬x,'}..}space-l - subset4’
Where {x} and {¬x,S} are summed
up in one block Bx which has the
effect in such a space-l that (tspace-l |
xspace-l) contradicting the assumption
that tspace-l splits the MSCN after it is
augmented using the CNAL xspace-l.
Suppose r=s, then form2 becomes:

{{r, a}..{r,x}..{a,t}..{¬x,'}{t,z’}} - form2’
Instantiating this formula in
steps<=k produces two sub-
formulas:

{..{a,t}{¬x,'}{t,z’}} - subset5
{..{a}..{x}..{a,t}..{¬x,'}{t,z’}} - subset6

Subset5 is again similar to form1
above. Subset6 has to be converted
to l.o. yielding blocks Ba, Bx which
are uninterrupted and come behind
each other, since (a < x)space-i as per
case assumption.

{..{a}{a,t}..{t,z’}…{x}{¬x,'}} space-m - subset6’
In such space-m: (tspace-m|xspace-m)
contradicting the assumption that
tspace-m splits the MSCN after it is

53 The reader may wish to verify this for
him/herself in a way similar to the one done for
a). One will find out, that changing the position

augmented using the
CNAL xspace-m.

∀i:(x | a)space-i: In that case BS has only
one of the two forms:
{..{¬x, '}..{a,t}…{t,z’}..} - form3
Or
{{r, x}..{s,a}..{a,t}..{¬x,'}{t,z’}}- form4
Form3 makes z<t and forbids thus,
because of (Lemma 1-c), in any
formed space-i, that: tspace-i <zspace-i,
unless the precedence of {¬x, S} on
{a,t} is changed which would be a
breach of the l.o. condition, since
(x | a) for all spaces.
For Form4 there are two cases:
Suppose r<s Then because
x<s<a<t the following two subsets
will result of the application of the
least Literal rule and conversion to a
l.o. set:

{ ..{¬x,'}..{s,a}..{a,t}..{t,z’}} space-n - subset7
{..{x}{¬x,'}..{s,a}..{a,t}..{t,z’}} space-o - subset8

Both forms don’t fulfill case
requirement: tspace-i <zspace-i
Suppose r=s: Then form4 becomes

{{r, x}..{r, a}..{a,t}..{¬x,'}{t,z’}}- form4’
Where r<x<a<t and the following
two sub-forms result from the
application of the least Literal rule
and/or the l.o. condition:

{..{¬x, '}..{a,t}…{t,z’}..}space-p - subset9
{..{x}{¬x,'}..{a}{a,t}..{t,z’}}space-q - subset10

Both forms don’t fulfill case
requirement: tspace-i <zspace-i

b) S becomes = {..{t}{S}{z’,t}} and since
t>z’>=z, the same contradictions seen in
a) can be shown for all possible BS
constellations.53

Resuming all cases of Lemma 9-c: BS
constellations supporting the intention of
first augmenting the size of [q]STsp1,sp2,sp3
using a CNAL L in step k, then splitting
it using <Literal i> all lead to
inconsistencies, if <Literal i>≠ L. Since L

of t in {t, z’} to become {z’,t} does not affect any
argument used here. The case is not extended to
avoid unnecessary length.

Abdelwahab, N.

56

56

itself cannot be used to split [q]STsp1,sp2,sp3
in steps >k, as seen above, this means that
such a MSCN cannot be split.
Here is yet another shorter version of
the proof of Lemma 9-c using only the
‘>’ relation for interested readers:
In step k: L is CNAL in a clause {¬L, S }
augmenting the size of [q] with {z}. As
per the definition of a MSCN : Literal z is
> all branch and edge literals of [q], i.e.,
z>L,a,b,c,d, where a,b,c,d,.. are all edge-
and/or branch-literals.
In any step >k a clause C={x,..} cannot
use L to split [q], since any +ve
occurrence of L in C will keep [q] as it is.
A –ve occurrence of L in C will only
augment the size of [q].
If (x>z) and (L≠x) then also x>a,b,c,d.
However: To split [q]: X needs to be
equal to either one of them.
Contradiction.
If (x<z) and (L≠x) then per l.o. condition
of BS also x>L and x cannot appear in a
Clause C’ before {¬L, S } as a HL, i.e., it
must be that C’={..,x}, L<x<z. Since L, z
are literals of the same clause, they must
be kept together in l.o. Clause Sets of
parent nodes of [q] and their images in
any space will always appear either
before or after Literal x or its images
causing contradictions to the case
assumption in all cases.
To see this : If x or any of its images split
the MSCN there has to be an edge marked
‘x’ of a parent node n in certain space-i
such that
2SATn={..{x}…{¬L, S}….{x,…}} space-i
which is not l.o.
Making 2SATn l.o. draws
Bx={{x}{x,..}..}space-i together prior to
{¬L, S}space-i which is supposed to
augment the size of the MSCN before
{x,..}space-i splits it. Contradiction. Even if
Bx is drawn after {¬L, S}space-i like in:

54 Rank 1 nodes of any size (i.e., nodes
containing only unit clauses) have a linear
number of nodes or sub-trees (in M)

2SATn={..{¬L, S}..{x}{x,…}}space-i, this
makes (x>z)space-i and thus also xspace-i>all
edge- or branch-literals of the MSCN in
this space, i.e., not able to cause a split,
and augmenting the size of [q] only.
Contradiction. (Q.E.D.)
It is imperative to summarize the
important findings of Lemma 9 before
proceeding to the next section:

a) (Lemma 9-a) shows that BigSps, i.e.,
Splits of rank 2 CN- or MSCN nodes
cannot occur during 2SAT-GSPRA+
resolution. This anchor result of the
work presented here puts a linear
upper bound54 on the number of
nodes which may be created via
duplication (Split) of any existing
CN/MSCN in any single step and
basically means that sub-problems
which need to be solved in different
manners again and again by 2SAT-
GSPRA+ are always strictly easier to
solve than the original problem.

b) (Lemma 9-b) shows cases where size-
1 Splits occur. It also shows another
anchor result, namely: No N-Splits
can occur, because of the l.o.
condition.

c) (Lemma 9-c) shows that the linear
upper bound of point a) is an
exaggeration and only a constant
number of nodes are generated
whenever a CN/MSCN splits in any
step, because Splits cannot occur for
CN/MSCN sizes>1.

Demonstrating then that the maximum
number of such CNs/MSCNs/sub-
problems must also be small suffices for
establishing the main node count result.
This is done in the next section.

Abdelwahab, N.

57

57

III-5 Complexity of 2SAT-FGPRA
We proceed by showing that the number
of unique nodes generated by 2SAT-
GSPRA+ is bounded above by a
polynomial in M, the number of clauses.
As 2SAT-GSPRA+ uses in each iteration
a data structure in which newly created
Clause Sets are stored in their CRA-
Form (LCS, c.f. Definition 14) there is a
guarantee that no more nodes/Clause
Sets are generated than the ones given by
the maximum unique node count.
(Lemma 2-c) makes sure that CRA-
Forms in CNs and/or MSCNs represent
Clause Sets which are logically
equivalent although they may belong to
different spaces.

Lemma 10: In any step i>=0 of 2SAT-
GSPRA+ resolving an arbitrary BS of
size M=i+1 with Clause Ci: Newly added
clauses used to align any nodes/sub-trees
of Clause Sets S’ of size <M produced in
steps <i can only come from ACS. The
total number of unique-nodes produced
by 2SAT-GSPRA+ for S in the final
MSRTs.o, including those generated by
Splits, is, therefore, bounded above by:

2+ c*RCC2-SAT2 *M4 + RCC2-SAT *M3,
c<=2, i.e., O(M4)

Moreover: This bound remains
polynomial, i.e., O(M6), even if Splits
are allowed which are not BigSps.

Proof: (by induction on M)

Base-Case: M=1: For size 1 nodes the
MSRTs.o representing a single clause
which is aligned per definition, the single
clause itself being the (Alignment-
Clause). For M=1 we have, therefore:

i=0: 2 <2+ 2*(4)2 *(1)4

Illustration Case: M=2: The alignment
of clause C1 to C0 in step i=1 of the
resolution adds in the worst case 2 to the
nodes of the MSRTs.o of clause C0 which
are also 2 at most (c.f. Lemma 6 and with

Figures 13 and 14). Thus, for step M=2
we have:

i=1: 2+2 <2+ 2*(4)2 *(2)4

The practically used ACS-portion is
comprised of clause C1 and/or its
derivations.

Induction Hypothesis (size M):
An IRT with a base-node of size M (step
i+1) in the form of (Figure 22) (here k=2)
is produced by adding in each step only
elements of the ACS to the size 1 nodes
levels (while aligning clauses to the
intermediate IRTs of previous steps) and
the total number of unique-nodes,
including those resulting from Splits, do
not exceed:

2+c*RCC2-SAT2 *M4 + RCC2-SAT*M3, c<=2

 Figure 22: IRT with base-node size M

::

Abdelwahab, N.

58

58

Induction Step (size M+1):
When IRT is resolved in step i+2 via
2SAT-GSPRA+ with a clause C:

1. k M-sized nodes shall become k M+1-
sized nodes and l.o. as well (per
definition of 2SAT-GSPRA+ and the
fact that the BS is l.o.). The breadth k
of the first clause C0 in S is not altered
and thus also the number of nodes in
the (Top-part). No other M+1-sized
nodes can be formed.

2. Recall that as per (Lemma 7): The
total number of generated size-1-level
nodes cannot exceed
RCC2-SAT*M2, if Splits are not
counted. In essence we show the same
again here, but in the context of only
one resolution step: For all <M-sized
nodes (when they are resolved with C
forming nodes of Sizes <= M): The
induction hypothesis applies, i.e., step
i+1 produced for each one of them at
most

|ACS|=RCC2-SAT*M

new nodes of size 1 in their respective
sub-trees (not counting Splits).
Suppose now that in step i+2 C is
aligned to such a node n (Figure 23)
needing for the alignment of sub-trees
of n (not necessarily in the same
space) some other clauses C’, C’’
from ACS. If two or more sub-
MSRTs.os of node n and/or any other
node are aligned with the same clause
C, C’ or C’’, then on size-1 level of

55 Trivial CNs/MSCNs are not accounted for,
because they can be avoided altogether w.l.o.g.
as per (Lemma 8).
56 This is a theoretical exaggeration, since CRA-
Forms of clauses like {a,b} and {x,y} are always
the same in reality so that only RCC2-SAT size-1

nodes are practically added to the overall
MSRTs.o in this step. Keeping the factor M lets
us assume that 2SAT-GSPRA+ handles

the final, overall MSRTs.o a
CN/MSCN possessing one unique
CRA-form (c.f. Definition 14 in
which CRA+ is always applied before
storing any Clause Set) will be built
only one time within a space or
between different spaces representing
each one of C, C’ or C’’. In addition:
All such non-trivial CNs/MSCNs55
can only represent members of ACS
per definition of ACS (Definition 13).
Thus, the total number of newly
formed, unique, size 1 nodes for all
trees and sub-trees in this step (which
may or may not become non-trivial
CNs/MSCNs) cannot exceed |ACS| in
the worst case56, i.e.: RCC2-SAT *M.

permutations of different clauses of the base set
differently, storing them in separate places when
they appear. This is of course not how 2SAT-
GSPRA+ works, but gives us a good way to
exaggerate our assumptions about its way of
work so that we can get a more reliable upper
bound. The exaggeration would be then: To leave
the M-factor, while counting any possible Splits
of all those redundant nodes as well.

Space-1

SRT1 SRT2 SRT3
3

……..

C

 Node n
C aligned to n

C’’ C' C

C’ C’’

Space-N

Size-1 Level

Figure 23

::

Abdelwahab, N.

59

59

3. As per 2., the total number of
generated non-trivial CNs/MSCNs at
level 1 cannot exceed RCC2-SAT *M2
in all steps without counting Splits.
To count Splits at level 1: Recall that
one copy of a node remains as it is and
another copy is resolved with a new
clause moving up the hierarchy (c.f.,
e.g., Figure 20). Assuming for the
worst case that each one of those
nodes is split by the newly resolved
clause C in step i+2 and remains in
the same level as it is as well: There
are RCC2-SAT ways to do so for any
CN/MSCN per definition57. Those
Splits can only form Clause Sets of
size 1 and produce only a constant
amount c(=<2) of new nodes each
time58. If we assume (also as an
exaggeration) that step i+2 adds all
ACS-elements of point 2 as new
nodes as well59, this makes the
maximum number of newly added
size 1 nodes in this step:

c*RCC2-SAT2 *M2+ RCC2-SAT *M

This means that

c*RCC2-SAT2 *M3 + RCC2-SAT *M2

is an upper bound of nodes added
to size-level 1 during the whole
process of resolution. What about
added nodes of sizes >1?
(Lemma 9-c) assures us that there
are no Splits of nodes at j-size

57 Recall that RCC2-SAT is the cardinality of the
Set of all clauses which are permutations of
Literal arrangements of a 2CNF clause C.
58 We are assuming hence that each newly
resolved clause in each step i+2 comes with a
least-literal equivalent to previously instantiated
block literals of parent-nodes of every non-trivial
CN/MSCN created before in every space and
Splits this non-trivial CN/MSCN in all possible
ways without breaching any l.o. condition. A
clear exaggeration.
59 Even if new nodes coming from ACS in this
step are counted twice this way: It only helps the
exaggeration intended here.

levels, for j>1. This means, we
can apply the (expansion Lemma
5-c) which asserts that in the
worst case and for the whole
resolution process: The upper
bound of the number of new
nodes at all those j-size levels
cannot exceed

c*RCC2-SAT2 *M3 + RCC2-SAT *M2

confirming thus the given O(M4)
bound for all levels.
Resuming again: The O(M2) nodes
generated in size level 1, which
include (as a worst case) also all
possibilities of Splits of CN/MSCNs
at this level, may in a further
exaggeration all be propagated up the
hierarchy of sizes to form at each step
and for each size-j-level of nodes
O(M2) additional, new ones. If they
are not propagated, they remain in
their respective levels and are not
accounted for further up in the
hierarchy60.

4. What happens if we relax (Lemma
9-c), i.e., allow Splits at size-levels j,
j>1, which are not BigSps? Any such
Split would cause only O(M) new
nodes to be generated each time it
occurs (as the nodes involved can
only be of rank 1). According to
(Lemma 5-b) any CN/MSCN [q] in a
size-level j and step k must be a
CN/MSCN [q’] of size-level j-1

60 Remember that, because there are no Splits at
such levels, a node in any size-level-j, j>1, can
either be propagated up in the hierarchy or left as
it is, but not both, the argument here can also be
expressed as follows: The O(M2) new nodes
formed at size-level 1 in each step may in the
worst case always stop at a certain level j>1 and
not be propagated further up in the hierarchy. In
that case level-j will contain at the end of the
resolution process at most O(M3) unique nodes.
Assuming that all other levels are similar to
level-j (an exaggeration which can never
happen), we get the O(M4) bound.

Abdelwahab, N.

60

60

created in steps<k and augmented by
the new resolved clause in step k. This
means that the number of
CNs/MSCNs which can split in any
size-level j cannot exceed the
maximum number of CNs/MSCNs at
size-level j-1 and ultimately at size-
level j=1, i.e., in the worst case O(M2)
as seen in point 2. Relaxing Lemma 9-
c, we can, therefore, assume as a
worst case that a new resolved clause
at any step k splits all CNs/MSCNs
residing in all levels j>=1 in RCC2-SAT
possible ways creating at each level
the maximum possible amount of
RCC2-SAT*O(M) new nodes for each
CN/MSCN and that those nodes may
all be propagated up the hierarchy as
well. Thus, the upper bound of unique
nodes created through Splits at any
level j>=1 and in any step k is: O(M3),
i.e., O(M4) for all steps. Using a
simple inductive argument on size-
levels 1<=j<=M, we can show that the
overall upper bound of unique nodes
is O(M6), whether nodes are
generated through Splits or through
propagation.

Base Case: Level j=1 contains at the
end of the resolution at most:
O(M3)<=1*O(M4) unique nodes as
just seen.

Induction Hypothesis: Size-level j
contains at the end of the resolution:
j*O(M4) unique nodes, j<=M

Induction Step: For size-level j+1:
As per 2SAT-GSPRA+ (Definition
14) a node can only become of size j

61Definitions: (14) and (15) of both Algorithms
deliberately leave the issue of choosing C0, the
head clause of 2CNF Clause Set S to the
respective implementations of the Algorithms,
thus opening up the possibilities for choices
which may lead to different node counts.
(Lemma 11) shows that whatever those choices
for 2SAT-GSPRA+ are, 2SAT-FGPRA can
simulate them correctly. Since only l.o. Clause

in any step k when either it was of size
j-1 in steps <k and it got augmented in
size or when it was generated via
Split. Unique nodes created through
Splits cannot exceed O(M4) for all
levels as just seen. Per induction
hypothesis: The number of unique,
size-level j nodes never surpasses
j*O(M4), which makes the total
number of unique nodes in size-level
j+1 after resolution terminates:
(j+1)*O(M4). As j<=M, we have in
each such level j at the end: O(M5),
making the overall upper bound for
the whole MSRTs.o: O(M6).

(Q.E.D.)

Finally: The following Lemma shows
that 2SAT-FGPRA (Definition 15) can
simulate 2SAT-GSPRA+ correctly, i.e.,
producing exactly the same MSRTs.o
when taking the same Clause Set sorting
choices. It also gives an asymptotic
upper bound of the number of operations
needed by 2SAT-FGPRA61.

Lemma 11: The following is true:
a- For any arbitrary 2CNF Clause

Set S: ∃G:MSRTs.o such that:
2SAT-FGPRA(S)=2SAT-GSPRA+(S)=G.

b- For 2SAT-FGPRA to produce
G shown to exist in point a-: For the main
Assistance Operations62 used by 2SAT-
FGPRA on 2CNF Clause Sets S of size
M: Node creation and returning results
(function SubTree), MSRTs.o creation for
a single clause (function Convert),
CRA+, Forming new Clause Sets using
least-Literal-rule (instantiation), Storing
(nodes), Searching Clause Sets in LCS:

Sets are used in any sub-problems generated by
instantiation operations, 2SAT-FGPRA is
producing a MSRTs.o equivalent to one produced
by 2SAT-GSPRA+, which always has a
polynomial number of unique nodes as just seen
in (Lemma 10).
62 By Assistance Operations we mean modules
and/or sub-functions used in the pseudo-code of
2SAT-FGPRA.

Abdelwahab, N.

61

61

The total, worst case number of
Primitive Operations63 performed by any
single one of them during a run of 2SAT-
FGPRA is: O(M9). Moreover: Relaxing
Lemma 9-c yields an upper bound of
O(M13).

Proof:
a- (induction on M, the size of S).
Assume that both Algorithms use the
same ordering choices in CRA+. Both
Algorithms use CRA+ in their
preparation phases (points 2 and 3 in
Definitions 14 and 15) on the same S,
i.e., they order clauses in S in the same
way. Remember also that they always
convert Clause Sets to l.o., particularly in
Top-Parts of resolution trees, using the
same CRA+ as well.

Base-Case: M=1: Because there is only
one C0 ∈ S, they convert it into the same
MSRTs.o G. In that case obviously:
2SAT-FGPRA (S)=2SAT-GSPRA+(S)=G.

Induction Hypothesis:
For all 2CNF Clause Sets S of size M:
∃MSRTs.o G such that:
2SAT-FGPRA (S)=2SAT-GSPRA+(S)=G.

Induction Step: If S is l.o. of size M+1,
then let S’=S\A, where A is the last
clause in S. Per induction hypothesis:
∃MSRTs.o G such that:

2SAT-FGPRA(S’)=2SAT-GSPRA+(S’)=G

and we distinguish two cases:

1- When A is aligned to G by 2SAT-
GSPRA+ to form G’ of S there is no
breach of any l.o. condition in any
parts of G and A is appended to all
Clause Sets of G in Top- as well as
Bottom-parts. In that case: Top-parts
of G’ are clearly equivalent for both
Algorithms because Literal choices
of C0 ∈ S are not affected by the
addition of clause A in either case

63 Primitive Operations take a constant amount
of time in the RAM computing model.

and A is appended to Clause Sets
which are exactly the same for both
Algorithms. We use the induction
hypothesis for Bottom-parts stating
that there are always graphs G1,
G2,…Gn which are equivalent for
both Algorithms and can be
substituted for Bottom-parts of G’ to
conclude that:

2SAT-FGPRA (S)=2SAT-GSPRA+(S)=G’

2- When A is aligned to G by 2SAT-
GSPRA+ to form G’ of S and there is
a breach of the l.o. condition in some
Clause Set S’’ in the Top-part of G’:
Because this breach relates only to A,
while all other clauses Ci ∈ S’’ are as
per induction hypothesis the same for
both Algorithms (and they use same
choices for CRA+ as well), both
Algorithms fix the breach generating
the same exact Clause Sets in Top-
parts of G’ and produce thus the
same, related Bottom-parts. If on the
other hand A causes the breach in
Bottom-parts whose Clause Sets are
all of size M, the induction
hypothesis applies and there are
graphs G1, G2,…Gn which are
equivalent for both Algorithms and
can be substituted for such Bottom-
parts of G’, thus:

2SAT-FGPRA(S)=2SAT-GSPRA+(S)=G’.

b- Because of (Lemma 10), we know that
the total number of unique-nodes in G
cannot exceed 2+ c*RCC2-SAT2 *M4 +
RCC2-SAT *M3, c<=2 (taking the result
obtained without relaxing Lemma 9-c).
Since G is produced by 2SAT-FGPRA as
per point a- as well: The following are
then upper bounds of the total number of
invocations of Primitive Operations for
all Assistance Operations listed above
for that Algorithm (c.f. Definition 15):

Abdelwahab, N.

62

62

1. 2+ c*RCC2-SAT2 *M4 + RCC2-SAT *M3

times CRA+ (each node needs
renaming of its Clause Set so that it
can be stored in LCS in its CRA-
Form). Through (Lemma 3) it is
known that CRA+ takes
O(M2(logM+N)). Since N cannot
exceed c*M, i.e., is in O(M)64, this
makes the total worst case number of
Primitive Operations for this
category: O(M7).

2. 2*(2+ c*RCC2-SAT2 *M4 + RCC2-SAT
*M3) times instantiation (two new
Clause Sets are formed for each node
in the worst case). Instantiating a
Clause Set by substituting values
TRUE or FALSE for a certain Literal
in all M clauses is an operation in
O(M). This makes the total number of
Primitive Operations for
instantiation: O(M5).

3. 2+ c*RCC2-SAT2 *M4 + RCC2-SAT *M3

times node creation assuming that it is
in O(c), i.e., O(M4). Same amount is
needed for all SubTree function
invocations, since getting from LCS a
stored sub-tree using its index may be
assumed to take O(c) operations.

4. 2+ c*RCC2-SAT2 *M4 + RCC2-SAT *M3

times Storing/Appending in/to LCS
assuming that it is in O(c), i.e.,
O(M4).

5. MSRTs.o creation for a single clause:
O(c), since independent of M any
clause can have at most 2 literals
where 2 nodes are created for each
one of them.

6. 2+ c*RCC2-SAT2 *M4 + RCC2-SAT *M3

times Searching Tuples in LCS. This
search operation can be accomplished

64 To c.f. this: Let M=f(N). f can be exponential,
i.e., N=O(log M), polynomial, i.e., N=O(M1/k)
for a given k or linear, i.e., N=c*M, c<=2, which
is the largest count N can reach, representing the
case where all clauses have distinct variables.

in the least efficient way65 by
sequentially comparing the sought
Clause Set with all Clause Sets stored
in the LCS, a single comparison of
two Clause Sets being in O(M). In the
worst case there are 2+ c*RCC2-SAT2
*M4 + RCC2-SAT *M3 Clause Sets in
LCS, i.e., O(M8) comparisons are
needed. This makes the total number
of Primitive Operations for Searching
O(M9).

If we relax Lemma 9-c we obviously get
O(M13) as the number of unique-nodes in
G would be in O(M6) as per (Lemma 10)
and the search operation in point 6 above
is, as seen, the bottle-neck of 2SAT-
FGPRA, requiring in the worst case:
O((unique-nodes)2*M) operations.
(Q.E.D.)

III-6 Counting Solutions
In this section we show that there exists
an efficient Algorithm which counts
solutions in the final MSRTs.o produced
by 2SAT-FGPRA. We give an example
of its application. Correctness and
efficiency are shown in Lemmas (13) and
(14) respectively.

Count2SATSolutions:

Inputs: The MSRTs.o generated by 2SAT-
FGPRA for a 2CNF Clause Set S

Outputs: Solution Count (Integer)
Steps: -
1- NamedMSRT = Name nodes and edges

starting from 0 and determine their levels.
(Algorithm: DetermineLevels below)

2- Set Solution Count for node n0 = 0, and for
edges on level 1 to be =1

3- For all levels i in NamedMSRT
a. For all edges eij, j is the index of an edge at

level i:

65 The least efficient way is chosen to avoid any
assumptions regarding sort- and search orders of
Clause Sets in LCS.

Abdelwahab, N.

63

63

i. Set Solution Count of eij=Solution Count
of parent node

b. For all nodes nik, k is the index of a node at
level i:
i. If nik is a TRUE leaf:

Solution Count of nik=(∑ex*2i-Le)*2N-i,
where x represents the index of any edge
going into nik, ex is the solution count of such
an edge, Le is edge level of x 66, N number
of variables in S

ii. Else
Solution Count of nik=∑ex*2i-Le

4- Return SolutionCount==∑ Tnd, Tnd is a TRUE
leaf node

Determining levels of nodes in the
MSRTs.o in the first step of
Count2SATSolutions requires
calculating the longest path from the
source node to each other node, since a
node may have several paths and its level
relates only to the longest one as per
(Definition 0.3), a problem which is in
general NP complete [Schrijver 2003]67.
However: The single-source longest path
problem for an un-weighted DAG (like
the MSRTs.o.) has an efficient and even
linear solution (O(|V|+|E|), V vertices
and E edges) which uses topological
ordering. In [Dasgupta 2006] (Ch. 4.7, p.
130), a single-source shortest-path
algorithm for DAGs is described. It only
needs to perform a sequence of updates
that includes every shortest path as a
subsequence. The key source of
efficiency is that in any path of a DAG,
the vertices appear in increasing
linearized order. Therefore, it is enough
to linearize (that is, topologically sort)
the DAG by depth-first search, and then
visit the vertices in sorted order,
updating the edges out of each. The

66 Recall as per (Definition 0.3): Le= LSr+1 if Sr
is the Source of e.

67 The longest path problem for a general graph
is not as easy as the shortest path problem
because it doesn’t have optimal substructure
property, i.e., that sub-paths between two nodes
have themselves to be optimal (enabling the
greedy strategy).

scheme doesn’t require edges to be
positive. In particular, one can find
longest paths in a DAG by the same
Algorithm: Just negating all edge
lengths. The following slightly modified
Algorithm first creates an ordering for
the MSRTs.o and then calculates the
longest distance from the source to each
node (which is then set to the level of that
node). Correctness and efficiency of the
original algorithm is discussed in the
above reference.

DetermineLevels:

Inputs: The MSRTs.o generated by 2SAT-
 FGPRA for a 2CNF Clause Set S

Outputs: Nodes named and their levels
calculated
Steps: -
1- Scan the MSRTs.o recursively, rename edges
and nodes and form the topological, lineralized
order in a depth first traversal manner68.
2- For all u ∈ V:

dist(u) = ∞

dist(s) = 0, s is source node

3- for each u ∈ V , in the linearized order:

 dist(u)= Dist(u, MSRTs.o.)

 Lu=| dist(u)|

Dist:

Inputs: u ∈ V, DAG = (V,E)
Outputs: Integer representing distance from u
to source of DAG
Steps: -
for all nodes v1,v2,..vn ∈V such that (u,vi) ∈E:

Dist (u,DAG) =

min{

[Dist (v1,DAG) + l(u, v1)], ….

68 A topological sort order of nodes is basically
an inequality, which may be formed in the
following way: For any two nodes n1, n2 children
of node n: create the inequality n<n1<n2 and add
it to the final inequality formed recursively
through depth first traversal. When the inequality
is extended: Node n1 and its children comes
before n2 and its children according to
precedence in already constructed inequalities.

Algorithm – A3

Abdelwahab, N.

64

64

[Dist (vn,DAG) + l(u, vn)]

}

l(u,vi,) is the length of the edge from u to vi
(which is always ‘-1’).

Applying this algorithm to the MSRTs.o
produced for Clause Set:
S={{0,1}{0,2}{3,4}} for example yields
after the first step (Figure 24).

In the third step the following example
sequence of operations is performed to
get the longest distance from n0 to n2
whose absolute value corresponds to the
level of n2:

a) The only way to go from n0 to n2 is
through the only direct predecessor node
n1. Thus dist(n2) = Dist(n1,DAG) -1

b) Dist(n1,DAG)=min{Dist(n0,DAG) -
1,Dist(n6,DAG)-1}= min{-1,Dist(n6,DAG)-1}

c) Dist(n6,DAG)= Dist(n5) -1
d) Dist(n5,DAG)= Dist(n0) -1=-1
e) Dist(n6,DAG)=-2
f) Dist(n1,DAG)= min{-1,-3}=-3
g) dist(n2) = -4
h) Ln2=4

(Figure 25) shows all nodes and their
levels.

69 The reader may wish to verify this number by
constructing the truth table and counting the
assignments satisfying S

After levels of nodes are created in step
1 of Count2SATSolutions as just seen,
executing steps 2, 3 through all levels
gives the following sequen ce of
operations completing thus the example:

a) Level-0: n0=0
b) Level-1: e0=1,e5=1,

n5=e5*2i-Le5=1*21-1=1
c) Level-2: e6=n5=1, e9=n5=1,

n6= e6*2i-Le6=1*22-2=1
d) Level-3: e7=n6=1, e8=n6=1,

n1=e0*2i-Le0+e7*2i-Le7=
1*23-1+1*23-3=5

e) Level-4: e1=n1=5, e2=n1=5,
n2=(e1*2i-Le1)*2N-i=
(5*24-4)*25-4=10, n3=e2*24-4=5,

f) Level-5: e3=n3=5, e4=n3=5,
n4=(e3*2i-Le3)*2N-i=
(5*25-5) * 25-5=5

g) Solution Count=n4+n2=1569

In the next Lemma we show that both
2SAT-GSPRA+ and 2SAT-FGPRA are
complete 2SAT-Solver Algorithms. As
per (Lemma 11-a) 2SAT-FGPRA
simulates 2SAT-GSPRA+ correctly
producing the same MSRTs.os. It is thus
sufficient to prove this property for
2SAT-GSPRA+. Doing this will enable
us to focus in the correctness proof of
Count2SATSolutions on MSRTs.os rather
than on truth tables

Algorithm – A4

Figure 24

Figure 25

Abdelwahab, N.

65

65

Lemma 12 (completeness, truth table
equivalence): 2SAT-GSPRA+ and
2SAT-FGPRA are complete, truth table
equivalent Algorithms, i.e.: Let S be a
2CNF Clause Set, A any Assignment of
truth values of literals in S, then:
Applying A on the MSRTs.o produced by
any of the two Algorithms leads to a
TRUE leaf iff A satisfies S.

Proof: We are going to show the result
w.l.o.g. for 2SAT-GSPRA+ only (by
induction on M, the number of clauses in
S)

Base: M=170 for the following MSRTs.o:

If we construct the Truth Table T2

a b S
0 0 1
0 1 0
1 0 1
1 1 1

and use the following propagation rule to
apply any Assignment A to any node in
the MSRTs.o:
"If the input value of the least Literal in
A is TRUE go left, else go right. Apply
this rule to all literals in A and nodes in
the MSRTs.o until you reach a leaf".
Then, the obtained results are equivalent
to the ones found in the truth table.
Check the two marked cases: For
assignment A="01" the base-node will
take us right through edge ¬a, then left
through edge b making the overall value
FALSE as the one indicated in the truth
table. For Assignment A="10" we are

70 The case used here (w.l.o.g.) is not the only
permutation of +ve/-ve literals a,b combined in a
clause. The reader is encouraged to check other

taken by edge a directly to the value
TRUE which is the value of the truth
table as well.

Induction Hypothesis: For all
Assignments A of truth values to literals
in S, SizeS=M: Applying A to the
MSRTs.o using the above propagation
rule returns TRUE iff A satisfies S.

Induction Step: Let S=S’+C,
SizeS=M+1. Remembering that S must
be l.o.: When C= {x,y} is added to S’ the
following cases can be distinguished:
1. x,y are new with respect to S’: 2SAT-

GSPRA+ propagates C until leaves
are reached (per l.o. condition the new
variables are > all literals in branches
of the previous tree). If leaves are +ve
then the tree representing C will
substitute them, otherwise FALSE is
left. Each branch ending with TRUE
stands per induction hypothesis for
the fact that - without the newly added
clause {x,y} - the Set S’ had already a
satisfiable assignment A and what is
missing is to satisfy {x,y} only by
extending A with a partial assignment
giving x, y truth values so that A
becomes A’. This is done through the
extension produced by 2SAT-
GSPRA+ which is a tree T similar to
the one in the base case. Because we
need only to check the two new
variables, it is easily seen (as in the
base case) that for all TRUE leaves of
T, reachable using the propagation
rule: A’ satisfies S’ +{x,y} and vice
versa, i.e., if a given A’ satisfies
S’+{x, y} through giving literals x or
y the value TRUE, then a TRUE leaf
in T must be reachable via the above
procedure. When on the other hand a
branch terminates with FALSE,
reachable through any assignment A,
it is guaranteed by induction

permutations and verify the validity of the
property for M=1 in a similar way to the one
shown here.

Figure 26

{¬b}

{a,¬b}

TRUE

a ¬a

b ¬b

FALSE TRUE

Truth Table - T2

Abdelwahab, N.

66

66

hypothesis also that S’ is not
satisfiable by A even without taking
the new clause into consideration.
Thus, A’ does not satisfy S’+{x,y} as
well for any truth values given to x
and/or y.

2. x exists in S’, while y is new: When C
is propagated through branches of the
tree, those terminating with FALSE
and reachable through assignment A -
as seen in the previous case - are not
dependent on the new clause and will
keep their values and guarantee (per
induction hypothesis) that S’ is not
satisfiable. Therefore for that case:
Any new assignment A’ adding a new
variables to A is not satisfying
S’+{x,y} as well. For all those
branches which terminate with TRUE
it either might be the case that this
truth value is independent of the new
variable y and thus kept as it is per
induction hypothesis (i.e., A satisfies
S’+{x,y}), or it is dependent on y and
the branch (and per induction
hypothesis its corresponding
assignment A) is extended with a sub-
tree containing two possibilities of
partial assignments satisfying the
single new clause {y}: (y=TRUE) and
(y=FALSE).Then: If
A’=A+(y=TRUE) satisfies S’+{x,y},
it leads to a TRUE leaf using the
above procedure and if
A’=A+(y=FALSE) doesn’t it leads to
a FALSE leaf (first direction) while if
S’+{x,y} has to be satisfied and we
are on a TRUE leaf,
A’=A+(y=TRUE) can be used to do
that (other direction).
Resuming the case of C = {x,y}:
Either no new nodes are added to the

71 For illustration: Consider the case where {1,2}
is added to {0,1}{0,2}. The left branch of the tree
for {0,1}{0,2} which is the leaf TRUE,
corresponds to the fact that values of 1&2 are not
relevant for the overall value of the formula
{0,1}{0,2} when literal 0 is set to TRUE

tree in all those branches where x
and/or y already exist and where per
induction hypothesis the tree is
already equivalent to the right truth
table or x and/or y are new in some
branch. In that case they will be added
to the +ve leaves accordingly and
correspond to specifications of truth
table values which were don't cares
before71.

(Q.E.D.)

The following Lemma shows then the
correctness of Count2SATSolutions.

Lemma 13 (Correctness): Let S be a
2CNF Clause Set for which 2SAT-
GSPRA+ or 2SAT-FGPRA produce a
MSRTs.o, AllAssignments the set of all
satisfibale Assignments of S, then:
Count2SATSolutions(S)=|AllAssignments|.

Proof: (by induction on N, the number
of levels of nodes in the MSRTs.o)

Base: N=1: Let S={{a}}, then
Count2SATSolutions produced in step 1
the following tree:

After which the following sequence of
operation steps follow:

a) Level-0: n0=0
b) Level-1: e0=e1=1, n1=e0=1
c) Result =1

Which represents the single assignment
satisfying S, namely: {(a=TRUE)}

following this particular assignment branch, i.e.,
they are Don't Cares. When {1,2} is added, its
tree replaces TRUE indicating for what values of
1 & 2 the same truth table gives truth values
capturing satisfiability conditions of the newly
added clause {1,2}.

Figure 27

{a}

TRUE FALSE
e1

n0

n1 e0

Abdelwahab, N.

67

67

Induction Hypothesis: For all levels N
in the MSRTs.o.: All node- and edge
values calculated via
Count2SATSolutions for that level represent
the exact number of solutions possible
through the respective node or edge.

Induction Step: For level N+1, when
node- and edge-values of that level are
calculated:

1- Edge values are equivalent to
values of parent nodes which are all
correct per induction hypothesis.

2- Node values are summations
of edge values either from the same
level and in that case (per -1) correct or
from prior levels. Call an edge from prior
levels e. The value of e is also correct per
induction hypothesis, but in need for a
multiplication factor (step 3-b-ii):
2(N+1)-Le representing the number of
exponential possibilities of partial
assignments lost by e through skipping
variables. Trivially: Any skipped
variable is accounted for by the
multiplication factor of 2.

3- Values for nodes which are
TRUE leaves are, with respect to
whatever happened before them, correct
(as per -1 and -2), but in need of another
multiplication factor 2NumberOfVars-(N+1)
representing the number of exponential
possibilities of partial assignments lost
through stopping at that level.

Therefore, the conclusion is that
assuming Count2SATSolutions counts
the solutions correctly for any level N, it
does the same for level N+1.
(Q.E.D.)

This section concludes with an upper
bound on the number of operations
needed by Count2SATSolutions.

Lemma 14 (Efficiency): Let S be a
2CNF Clause Set for which 2SAT-
GSPRA+ or 2SAT-FGPRA produce a
MSRTs.o: The number of steps taken by
Count2SATSolutions to count all exact
solutions of S is in O(M9), M being the
number of clauses (size) of S. If we relax
(Lemma 9-c) we get O(M13).

Proof: Remembering that the number of
nodes/vertices of a MSRTs.o is O(M4) (as
per Lemma 10) and edges cannot exceed
thus O(M8) in this DAG, we have the
following:

 1- Step 1 in Count2SATSolutions,
i.e., DetermineLevels Algorithm, takes
an amount of steps linear in the number
of nodes and edges, i.e., O(M8):

a- Scanning the MSRTs.o
in the first step to rename nodes
and edges and calculate the
topological order is in O(M8)

b- Applying the single-
source shortest-path algorithm
for DAGs is in O(M8) as well
(c.f. [Dasgupta 2006], Ch. 4.7, p.
130)

2- In further steps
Count2SATSolutions loops through all
levels calculating edge- and node-values
for each level. In the worst case, this
would be O(M8*N), where N is the
number of variables in S. Since N is in
O(M) (c.f. Lemma 11 Footnote 64), we
get an upper bound of O(M9). Relaxing
(Lemma 9-c) gives us as per (Lemma 10)
O(M6) for the unique node count, which
makes counting in O(M13) in that case.
(Q.E.D.)

Now we are ready for the main theorem
of this paper.

Abdelwahab, N.

68

68

III-7 Main Result
Theorem 1:
a- Let S be a kCNF Clause Set, k>0,
kSAT-GSPRA+ and kSAT-FGPRA
Algorithms which are generalizations of
2SAT-GSPRA+ and 2SAT-FGPRA
allowing kCNF Clause Sets as input, but
agreeing on all other resolution steps, in
particular those related to:

i- Imposing l.o. conditions via
CRA+ and using least literals for
instantiation

ii- Creating CNs/MSCNs at any
size-level j only from CNs/MSCNs at
size-level j-1

and for which we can show that:

1- No N-Splits can exist
2- No Splits of CN/MSCN nodes

 of rank k can exist
3- kSAT-FGPRA simulates
 kSAT-GSPRA+ correctly

And let Uk denote an upper bound of the
number of unique nodes generated in a
MSRTs.o through anyone of kSAT-
GSPRA+ or kSAT-FGPRA while
resolving S, then:
Uk<=Uk-1*O(M5) where Uk-1 is
polynomial in M, M number of clauses
of S. kSAT-FGPRA is in P, more
particularly in: O(M)*(Uk)2. This implies
that P=NP.
b- Counting the exact number of
Assignments which satisfy Q, a 2CNF
Clause Set, (called the #2SAT problem)
is in P: O(M9), or, if (Lemma 9-c) is
relaxed: O(M13). Because of this also:
P=NP.

Proof:
a- Proof is by induction on k, the
rank of the kCNF Clause Set S:

Base Cases: k=1: Obviously: If S is
a 1CNF Clause Set (i.e., formed
only of unit clauses) we get
MSRTs.os with O(M) unique nodes

which are formed via anyone of
1SAT-GSPRA+ or 1SAT-FGPRA
through instantiation of uniquely
occurring literals one by one (after
converting S to a l.o. 1CNF Clause
Set). Complexity of 1SAT-FGPRA
is O(M3) as searching already
resolved 1CNF Clause Sets
requires: O((unique-nodes)2*M)
operations (c.f. Lemma 11). 1SAT-
FGPRA is in P. CNs do not exist.
Splits don’t exist as well, because
sub-formulas can only appear in one
node.

k=2: (Lemma 10) in this work asserts
that: If S is a 2CNF Clause Set, then even
relaxing the property that Splits
(produced by anyone of 2SAT-GSPRA+
or 2SAT-FGPRA) in size-levels j>1 of a
MSRTs.o cannot exist, shown to be true
in (Lemma 9-c), yields a unique node
count of only O(M6). Recall that this
node count was obtained as follows:
Because rank k=2 CN/MSCNs cannot
split as per (Lemma 9-a) and no N-Splits
can occur as per (Lemma 9-b) as well,
and because CNs/MSCNs at any size-
level j only come from CNs/MSCNs at
the lower size-level j-1 (Lemma 5-b),
only O(M2) rank k=1 CN/MSCNs may
split in the worst case at any one step
forming each O(M) new nodes (the node
count of 1CNF MSRTs.os) at any size-
level j. For all steps this makes them
O(M4) nodes generated via Splits per
size-level. A size-level j<=M
accumulates in the worst case also
whatever may have been generated in the
lower size-level j-1, which is given by
(j-1)*O(M4) making the overall node
count j*O(M4)=O(M5) per size-level.
For all size-levels we get then the O(M6)
bound in (Lemma 10). Putting U1=O(M)
in inequality U2<=U1*O(M5) yields the
same result. For the complexity of
2SAT-FGPRA: O(M13)= O(M)*(M6)2 as
shown in (Lemma 11). 2SAT-FGPRA is
in P.

Abdelwahab, N.

69

69

k=372: In [Abdelwahab 2016-2] it is
shown that:

1- No Splits of CN/MSCN nodes
of rank k=3 can exist (Lemma 9)

2- FGPRA simulates GSPRA+
correctly (both of them conceived for
k=3).

Although it is not explicitly shown
there that N-Splits don’t exist in
MSRTs.os produced by anyone of
FGPRA or GSPRA+, the argument
seen in (Lemma 9-b) in this work
can be extended to demonstrate that
it is indeed the case73. GSPRA+ has
also the feature of reconstructing
sub-trees in case a Clause Set is
found to be not l.o. This is the same
condition which enabled us to
deduce (Lemma 5-b) that:
CNs/MSCNs at any level j can only
come from CNs/MSCNs at the
lower level j-1. Although Lemma
13 in [Abdelwahab 2016-2] shows,
similar to (Lemma 10) in this work,
an upper bound of O(M4) of unique
nodes, because size-j>1 Splits are
not possible, relaxing this condition
enables us to use exactly the same
arguments used for the above k=2
base case. When we do so: Putting
U2=O(M6) in U3<= U2*O(M5),
gives us the unique node count of
O(M11), and a complexity of
O(M23)=O(M)*(M11)2 for FGPRA

which, although larger than the
O(M9) result of [Abdelwahab 2016-
2] is still in P of course.

Induction Hypothesis74: For any kCNF
Clause Set S, k>0, kSAT-GSPRA+ and
kSAT-FGPRA Algorithms satisfying

72 Base cases k=1, k=2 are enough for this
inductive argument and make the results shown
here independent of any investigations given in
[Abdelwahab 2016-2]. It is, nevertheless,
important to show the link to - and thus the
continuity of - ideas presented there as well.

conditions 1, 2 & 3 above:
Uk<=Uk-1*O(M5), where Uk-1 is a
polynomial expression in M, kSAT-
FGPRA is efficient, more particularly its
time complexity is given by:
O(M)*(Uk)2.

Induction Step: Suppose for a
(k+1)CNF formula F that we can show
(k+1)SAT-GSPRA+ has the following
properties:

1- No N-Splits can exist
2- No Splits of CN/MSCN nodes

of rank k+1 can exist
3- (k+1)SAT-FGPRA simulates

(k+1)SAT-GSPRA+ correctly.

We do this, for example, by extending
the arguments used, per induction
hypothesis, to show the same for kSAT-
FGPRA and kSAT-GSPRA+. Then our
argument for k+1 may go as follows:
Because rank k+1 CN/MSCNs cannot
split and no N-Splits can occur as well,
and because CNs/MSCNs at any level j
only come from CNs/MSCNs at the
lower level j-1, only O(M2) rank k
CN/MSCNs may split in the worst case
at any one step forming, per induction
hypothesis, each at most Uk new nodes at
any size-level j. For all steps this makes
Uk*O(M3) nodes generated via Splits per
level. A level j<=M accumulates in the
worst case also whatever may be
generated in the lower level j-1, which is
as already seen above (j-1)*Uk*O(M3)
making the overall count j*Uk*O(M3)=
Uk*O(M4) per level. For all levels we get
then the inequality Uk+1<=Uk*O(M5).
The complexity expression follows, as

73 Recall that this argument only uses the l.o.
condition imposed on all Clause Sets to arrive at
the result (c.f. Lemma 9-b).
74 This induction hypothesis implies P=NP.

Abdelwahab, N.

70

70

seen in all base cases, from the bottle-
neck search condition requiring:
O(M)*(Uk+1)2 operations. Since Uk is,
per induction hypothesis, a polynomial
expression and kSAT, for k>2, an NP-
compete problem, it follows that:

P=NP.

Suppose now that we don’t show for F
that (k+1)SAT-GSPRA+ and (k+1)SAT-
FGPRA Algorithms satisfy conditions
1,2 & 3. Even then, remembering that
kSAT is NP-complete for any k>2: There
is a polynomial time reduction from
(k+1)SAT to kSAT. We could for
example convert F to a kCNF formula F’
via an equisatisfiable transformation and
use kSAT-FGPRA to solve it. The
number of clauses of F’ would be
bounded above by (k+1)*M, M number
of clauses of F, because such
transformations generate always at most
(k+1) clauses for any clause C∈F. As per
induction hypothesis: kSAT-FGPRA’s
time complexity is given by:

O(M)*(Uk)2, where Uk-1 is a polynomial
expression of degree, say, d>0 in M and
Uk<=Uk-1*O(M5). Substituting (k+1)*M
for M in this inequality gives:

Uk<=(k+1)d+1*Uk-1*O(M5) and does not
disturb the polynomial behavior of
kSAT-FGPRA as expected. Since
Uk+1=Uk, this trivially means also that:
Uk+1<=Uk*O(M5) which was to be
shown. F’ can thus be solved by a
polynomial time Algorithm producing a
polynomial number of unique nodes, i.e.,

P=NP.

No surprise since P=NP was already
embedded in the strong induction
hypothesis.

b- The same main result follows also
directly from the following observations:

1- Using 2SAT-FGPRA to
produce a MSRTs.o for Q is, as per
(Lemma 11) in this work, in O(M9) or in
O(M13) if we relax (Lemma 9-c).

2- Counting the exact number of
solutions using Count2SATSolutions is,
for the same reason, also either in O(M9)
or in O(M13) as per (Lemma 14).

3- This means that any Algorithm
solving #2SAT using 2SAT-FGPRA
first to construct the MSRTs.o and then
Count2SATSolutions needs in the worst
case only O(M9) or O(M13) primitive
operations. #2SAT is known to be #P-
complete (c.f. [Valiant 1979]), therefore:

P=NP

(Q.E.D.)

Abdelwahab, N.

71

71

IV DISCUSSION OF RESULTS
This work shows that small FBDDs for
base cases of kSAT: k=1, k=2 are
achievable via SPR-like Algorithms
which neither possess N- nor Big-Splits.
Moreover: The nature of those
Algorithms permits a uniform
expression of result parameters of 2SAT-
GSPRA+/2SAT-FGPRA versions in
terms of 1SAT-GSPRA+/1SAT-FGPRA
versions for both: The upper bound of
the number of unique nodes in generated
FBDDs and the worst case time
complexity. This is sufficient to prove
P=NP in the following two different
ways:

a- FBDDs of polynomial sizes
for arbitrary 2CNF formulas enable the
definition of efficient model counting
solutions resulting in solving #2SAT in a
polynomial number of steps (Theorem 1-
b).

b- Uniformly linking efficient
1SAT- and 2SAT-versions of SPR-
Algorithms, while proving small, upper
bounds on unique node counts, enables
formulating the strongest possible
induction hypothesis, namely: That
kSAT-FGPRA is a polynomial time
Algorithm producing polynomial
number of unique nodes in a FBDD
(which means: P=NP). This in its turn
facilitates using kSAT-FGPRA to solve
(k+1)CNF formulas via equisatisfiable
translations in the induction step,
completing thus a third way of showing
that P=NP in (Theorem1-a)75.

The core work of demonstrating that
FBDDs for a 2CNF formula F can
always be small strongly relates to the
concept of a Split, which expresses the
fact, that some sub-formulas of F may be
repeatedly processed during resolution.
Fatal cases of processing sub-formulas

75 Counting also the solution of 3SAT presented
in [Abdelwahab 2016-2].

of the same difficulty as the original
problem from scratch again and again
(N- and Big-Splits) are shown to be
avoided using imposed l.o. conditions.
The rest of existing rank 1- and/or size 1-
Splits facilitate a uniform formulation of
the relation between k- and (k-1)SAT-
SPR-Algorithms when some lemmas are
relaxed.

Splits are not mere accidents which don’t
have a rational reason. They reflect
consequences of tangible pattern-
properties of variables found in nature
and enforced on Clause Sets to serve, in
addition to usual container-properties, in
the definition of SPR-like procedures.

Finally: Discussing the consequences of
our findings is beyond the scope of this
work.

Abdelwahab, N.

72

72

V REFERENCES
1. [Abdelwahab 2016-1]:

N. Abdelwahab, On the dual Nature
of logical Variables and Clause Sets,
J. Acad. (N.Y.) 2016, Vol. 6, 3:202-
239.

2. [Abdelwahab 2016-2]:
N. Abdelwahab, Constructive
Patterns of Logical Truth, J. Acad.
(N.Y.) 2016, Vol. 6, 2:99.

3. [Gal 1997]: Anna Gal, A simple
function read-once that requires
exponential size branching
programs, Information Processing
Letters 62 (1997), 13-16.

4. [Beame 2013]: Beame, P., Li, J.,
Roy, S. and Suciu, D. 2013. Lower
bounds for exact model counting and
applications in probabilistic
databases. In Proceedings of the
Twenty-Ninth Conference on
Uncertainty in Artificial Intelligence,
UAI 2013, Bellevue, WA, USA,
August 11 - 15 2013.

5. [Bolling 1996]: Bollig, B.; Wegener,
I., Improving the Variable Ordering
of OBDDs is NP-Complete, IEEE
Transactions on Computers, Vol. 45,
1996.

6. [Bryant 1986]: Randal Bryant,
Graph-Based Algorithms for
Boolean Function Manipulation,
IEEE Transactions on Computers, C-
35-8, 677-691, August, 1986

7. [Burch 1991]: Jerry R. Burch, Using
BDDs to verify multipliers, DAC’91
Proceedings of the 28th ACM/IEEE
Design Automation Conference,
408-412.

8. [Darwiche 2002]: Adnan Darwiche,
Pierre Marquis, A knowledge
compilation map, Journal of
Artificial Intelligence Research 17
(2002) 229-264, AI Access
Foundation and Morgan Kaufmann
Publishers.

9. [Dasgupta 2006]: Sanjoy

Dasgupta, Christos H.
Papadimitriou, and Umesh
Vazirani. 2006. Algorithms (1
ed.). McGraw-Hill, Inc., New
York, NY, USA.

10. [DeItaLuna 2012]: De Ita, Guillermo
& Marcial-Romero, J. (2012).
Computing #2SAT and #2UNSAT
by binary patterns. 273-282.
10.1007/978-3-642-31149-9_28.

11. [Fuerer 2007]: Fürer M.,
Kasiviswanathan S.P., Algorithms
for Counting 2-Sat Solutions and
Colorings with Applications. In: Kao
MY., Li XY. (eds.) Algorithmic
Aspects in Information and
Management. AAIM 2007. Lecture
Notes in Computer Science, Vol.
4508. Springer, Berlin, Heidelberg.

12. [Handbook of Satisfiability 2009]:
Armin Biere et al., Handbook of
Satisfiability, Publisher IOS Press,
Nieuwe Hemweg 6B, 1013 BG
Amsterdam Netherlands.

13. [Rudell 1993]: R. Rudell,
Dynamic Variable ordering for
ordered binary decision
diagrams, ICCAD-93. Digest of
Technical Papers., 1993
IEEE/ACM International
Conference on Computer-Aided
Design, 1993.

14. [Sauerhoff 2003]: Sauerhoff and P.
Woelfel, Time-space tradeoff lower
bounds for integer multiplication
and graphs of arithmetic functions.
In Proceedings of the 35th Annual
ACM Symposium on Theory of
Computing (STOC), pp. 186–195.

15. [Sieling 1995]: D. Sieling and I.
Wegener, Graph driven BDDs -
a new data structure for Boolean
functions, Theoretical Computer
Science, 141, 1995,283-310.

Abdelwahab, N.

73

73

16. [Schrijver 2003]: Combinatorial
Optimization: Polyhedra and
Efficiency, Volume 1, Algorithms
and Combinatorics, 24, Springer, p.
114.

17. [Valiant 1979]: Valiant, L. G. The
complexity of enumeration and
reliability problems. SIAM Journal
of Computing 8, 3 (1979), 410–421.

18. [Wegener 1988]: I. Wegener, On the
complexity of branching programs
and decision trees for clique
functions, Journal of the ACM, 35,
1988,461-471.

19. [Wegener 2000]: Ingo Wegener,
Branching Programs and Binary
Decision Diagrams, Theory and
Applications, SIAM 2000.

20. [Zak 1984]: S. Zak, An exponential
lower bound for one-time-only
branching programs, MFCS'84,
LNCS 176, 1984, 562-566.

Abdelwahab, N.

74

74

VI APPENDICES
VI-A Formal terms, their definitions and usage

Term/(Acronym,Link) Definition Formally Used in Comment

Variable, Literal, Clause,
2CNF Formula/Clause Set

0.1 Standard Basic ---

Truth Assignment, Partial
Assignment, Restricted
Assignment

0.1 f:Var =>{0,1}. When f is partial it
is called Partial Assignment,
when it is restricted to only one
variable it is called Restricted
Assignment

Basic,
(Lemma 2)

2SAT Decision Problem 0.2 Standard Basic ---

Graphs, Vertices/Nodes,
Edges, adjacent vertex,
Source, Target , reachable,
Child, Parent, Base Node
(BN), Path, Branch,
acyclic, Length of
Path/Branch, Directed
Acyclic Graph (DAG)

0.3 Standard Basic ---

Source Path of node n (SPn) 0.3 SPn:List<Edges> Counting
Models

Used for determining
node levels in the
(Count2SATSolutions)
procedure (Section III-6)

Level of node n (Ln) in a
DAG

0.3 Ln=Max(length(SPn
1)..length(SPn

k))
where any SPni is a Source Path of
n.

Counting
Models

Used in the
(Count2SATSolutions)
procedure (Section III-6)

Level of edge e (Le) in a
DAG

0.3 Le=LSR+1, where SR is Source of
e

Counting
Models

Used in the
(Count2SATSolutions)
procedure (Section III-6)

Topological Ordering of a
DAG (TO)

0.3 ∀e:Edge, e=(vi , vj), vi,vjÎV: i< j Counting
Models

Used in the
(Count2SATSolutions)
procedure (Section III-6)

-Sequential Resolution
DAG (SR-DAG)
- 2CNF Clause Set of a
node (2CNFnode),
- Base Clause Set (BS),
- (TRUE-DAG)
- (FALSE-DAG)

0.3 -SR-DAG: ∀n:NodeÎd:DAG:
∃S, S is 2CNF Clause Set, S is the
Clause Set of n (2CNFn). BS is
2CNFBN.
- TRUE-DAG: SR-DAG with one
node only labeled TRUE.
FALSE-DAG: similar.

Basic ---

-(rankC)
-(rankNode)
-(rank2CNF)

0.3 - rankC: (clause) => N
- rankS=rankNode=
Max(rankC(C1)..rankC(Cm)),
C1-CmÎS, S is 2CNFNode

Basic - rankC: Number of literals
in clause C

-Size of a node n (Sizen),
-Size of a 2CNF Clause Set
S (SizeS)

0.3 Standard Basic - Sizen: Number of clauses
in the 2CNFn
- SizeS: Number of clauses
in a 2CNF Clause Set S

-(Top-Part) of a SR-DAG 0.3 Topd:SR-DAG={n:NodeÎd | ∃S, S is
2CNFn, SizeS=M or SizeS=M-1,
SizeBNÎd=M}

Basic ---

Abdelwahab, N.

75

75

-(LeftDAG)
- (RightDAG)
- (SubTree)

0.3 LeftDAG: (n:Node)=>SR-DAG
rightDAG: (n:Node)=>SR-DAG
SubTree: (n:Node)=>SR-DAG

Basic - Functions returning SR-
DAGs of left- and right
Child nodes of a node n
- SubTree: Is a Function
which, given a node n of a
SR-DAG, returns the
portion of the SR-DAG
starting with n.

Literals in a 2CNF Clause
Set S (LIT)

0.4 LIT: (S) => Var

Basic,
(Lemma 1)
(Lemma 2)

Function returning all
literals in S

Left literals of Literal x
(LEFT)

0.4 LEFT:(x:LiteralÎC,C:ClauseÎS)
=> Var

Basic - LEFT: Function
returning literals
occurring to the left of a
Literal x in the string
representation of S

(SortOrder) 0.4 SortOrder:(C:ClauseÎS, S:2CNF
Clause Set)=>int

Basic,
(Lemma 1)

- Function mapping clause
CÎ S and 2CNF Clause
Set S to an integer number
representing the position
of C within S

-Head-Literal, Tail-Literal
(HL,TL)
-Connectivity of a Literal x
in a 2CNF Clause Set S
(Connectx,S)

0.4 HL={L:Literal | CÎ S, S is 2CNF
Clause Set, C={L, t}}
TL={L:Literl | CÎ S, S is 2CNF
Clause Set, C={t, L}}
Connectivity:(x:LiteralÎ
S,S)=>int

Basic -First Literal in any clause
is called Head-, last one is
called Tail-Literal
- Connectivity: Is a
Function mapping a
Literal x in a Clause Set S
to the number of clauses
of S in which the Literal x
appears. It is used in CRA

-Permutations of CÎS, S is
2CNF Clause Set (permC).
-Resolution Complexity
Coefficient (RCC)
- Alignment 2CNF Clause
Set of S (ACS).

0.4, 13 - permC={CÎ S | C={a, b} or
C={b, a} or C={a} or C={b}, a,
b:LiteralÎC}

-RCCk-SAT=kPk+kPk-1+kPk-2+…kP1
i.e., for 2SAT
RCC2-SAT= 2P2 + 2P1 = 4
- ACS=∪permCiÎS for all CiÎS

(Lemma 7)
(Lemma 10)

- permC is the Set of all
clauses which use
permutations of Literals in
CÎ S
- ACS is the Set of all
unique clauses and their
derivations used for the
alignment of all nodes of a
MSRTs.o

-Instantiations of Literals,
- (Derivation) of CÎ S and
S is 2CNF Clause Set,
-(Linear Derivation) of CÎ
S,
-(Empty Derivation) of CÎ
S,
-(Positive Derivation) of
CÎ S,
-(Negative Derivation) of
CÎ S,
-(Every Derivation) of CÎ
S,
-(InstSimple)
- InstSimpleC,
- Satisfiability of S

0.4 -Inst:(A:Assignment,S) => 2CNF
Clause Set
-
InstSimple=Inst(A:RestrictedAss
ignment,S) => 2CNF Clause Set.
-InstSimpleC:
(A:RestrictedAssignment,C:Clau
se) => 2CNF Clause Set
a-
InstSimpleC:(A:Assignment,C:Cl
ause) => Clause
b- Derivation of a clause C
isÎ{C’:Clause | C’Î permC}.
c- Linear Derivation of C is Î
{C’:Clause| C’={a,b} or C’={b} ,
a, b:LiteralÎC, a<b}
d- Empty Derivation of C is Î
{C’:Clause| C’={TRUE} or

Basic,
(Lemma 2)

- Instantiations are
functions using Total or
Partial Truth Assignments
to create new Clause Sets.
They substitute literals in
Clause Sets by Boolean
truth values given in the
Assignment.
- The clause resulting
from applying an
instantiation on any CÎ S
is called a derivation of C.
- It is called linear
Derivation if consecutive
instantiations respect the
linear order of literals in
C.

Abdelwahab, N.

76

76

{FALSE} or {TRUE,FALSE} or
{FALSE,TRUE} or
{FALSE,FALSE} or
{TRUE,TRUE}}
e- Positive Derivation of C is Î
{C’:Clause| TRUE ÎC’}
f-Negative Derivation of C is Î
{C’:Clause|
C’={FALSE,FALSE} or
C’={FALSE}}
g- Every Derivation of C is
Î{C’:Clause| C’Î permC or C’Î
Empty Derivation of C}

- If consecutive
instantiations result in a
clause containing only
truth values and no
literals, the derivation is
called: Empty Derivation
- A Derivation containing
one TRUE value is called
Positive Derivation.
- A Derivation containing
only FALSE values is
called Negative
Derivation.
- Derivations can be
directly evaluated to
TRUE or FALSE.
Evaluation is embedded in
the Inst function. If this
evaluation results in the
TRUE, S is said to be
satisfiable by A.
- When Partial
Assignments used by Inst
are related to only one
variable, Inst is called
InstSimple. InstSimple
can be restricted to only
one clause and becomes
InstSimpleC
- S is said to be satisfiable
by A: If Inst(A,S) results
in the overall value TRUE
C.f.: (Lemma 2)

- (Convert) a clause to SR-
DAG,
-(FIRST) occurrence of a
Literal in a 2CNF Clause
Set S,
-(SELECT) a Literal from a
2CNF Clause Set S

0.4 - Convert(C:ClauseÎS)=>SR-
DAG
- FIRST/FIRSTC(L:Literal,
S)=>int
- SELECT(S)=>int

Basic,
(Lemma 1)

- Convert is a function
mapping a 2CNF Clause
C={a1,b11} to a SR-DAG
by substituting in two
subsequent simple
instantiation steps first a1
with TRUE and FALSE
creating Clause Sets and
placing them in the
respective nodes of the
SR-DAG and then doing
the same for b11 (Figure
2).
- FIRST: is a function
mapping a Literal and a
Clause Set S to the integer
position (starting from the
left) of the Literal in the
string representation of S.
FIRSTC is the version of
this function which
returns the index of the
clause in which L appears
for the first time, c.f.:
(Lemma 1-c)

Abdelwahab, N.

77

77

- SELECT: Is a Function
selecting a Literal from
LIT(S). Although generic,
it is only used in
Algorithms of this work to
select the least Literal
according to LLR

-Linearly Ordered- (l.o.) ,
-Linearly Ordered, but
unsorted (l.o.u.),
-Almost Arbitrary (a.a.)
Clause Sets

1 For a 2CNF formula S, S is called
l.o. if the following Conditions
hold:

a)		∀ai,bij∈	Ci,j: ai<bij
b)		∀i,j,x,y: if i<j then

 L2∈Cj,x >= L1∈Ci,y,

 where L2 is HL of Cj,x

 and L1 HL of Ci,y,

 SortOrder(Cj,x,S)>

 SortOrder(Ci,y,S)
c)		∀xÎLIT(S),∀Ci,jÎS:
 if x ∉ LEFT(x,Ci,j) then
						∀yÎ LEFT(x,Ci,j): x>y
d) S is a Set

If S fulfills Conditions a), c), d),
but not b) it is l.o.u. If S fulfills
Conditions a), d) only it is a.a.

All
Lemmas

a) Literal names/indices
are sorted in
ascending order
within clauses.

b) S is sorted by ai
& bij in
ascending order
taking into
consideration
negation signs.

c) all new
Names/Indices of
literals occurring for
the first time in a
clause C of S are
strictly larger than all
the Literal
Names/Indices
occurring before
them in S

d) Clauses appear only
once in S.

- Blocks (Ba),
- Block-Literal,
- Block-Sequence (Bseq),
- Symmetric Block (SB),
- Dissymmetric Block
(DB),
-(DB Sorting Condition)

1 - Bax={{ax,bx1}{ax,bx2} ..
{ax,bxi,}} is a 2CNF Clause Set.
- ax is Block-Literal
- S={Ba…Bn} is Block-Sequence
- A Block Bx is called SB if ∃A:
Assignment such that:
instSimple(A:{X=TRUE},Bx}=
instSimple(A:{X =FALSE}, Bx}
-It is called DB if ∃A:Assignment
such that:
instSimple(A:{X=TRUE},Bx}=S1,
instSimple(A:{X =FALSE}, Bx}=S2
and either S1 ⊆ S2 or S2⊆ S1.

Basic,
(Lemma 8)
(Lemma 9)

- Blocks are referred to by
the name of the leading
Literal (in this case S is
called ax-Block).
- Clauses having ax as
leading Literal are said to
belong to the ax-Block.
- A Block Bx is called SB
if -ve and/or +ve
instantiations of Block
Literal x result in the same
Clause Set.
- A Block Bx is called DB
if -ve and/or +ve
instantiations of Block
Literal x result in Sets S1,
S2 and one of them is
included in the other.
- DB Sorting Condition: If
a DB Bx is sorted such that
all clauses containing –ve
instances of Literal x are
placed before all those
containing +ve instances
or vice versa

-(2SAT-GSPRA
Procedure),
- (Align Procedure),

2 -2SAT-GSPRA Procedure (c.f.
Section III.1)

(Lemma 5) - A node in a SR-DAG is
symbolized by [x] if the

Abdelwahab, N.

78

78

-Name Literal (NL), -
(Edge Literal)
- (Branch Literal)
- Least Literal Rule of a
2CNF Clause Set S (LLRS),
-Variable Ordering (∏p),
-CanonicalOrdering (∏cp)

-Align Procedure (c.f. Section
III.1)
- NL=LLRS={i:Literal |∃BS:
2CNF Clause Set, ∃n:NodeÎSR-
DAGBS, S is 2CNFn,
SELECT(S)=i and ∀xÎLIT(S):
i<x}
-∏p=<i,j,k,…> where i,j,k,…
integers such that i<j<k<….

lead clause in its Clause
Set is headed by a least-
Literal x. Moreover: x is
called the NL of this
Clause Set/node.
- Edges going out of a SR-
DAG node [x] are marked
with x and represent
instantiations of the NL x
of the Clause Set of that
node (this fact is called
LLR).
-Literals on edges of
branches leading
indirectly to a node n are
called branch-literals of n
while literals on edges
connected directly to n are
called edge-literals of n.
Every edge-Literal is a
branch-Literal, but not
vice versa.
- A variable ordering of a
problem p (∏p) expressed
as a 2CNF Clause Set S
and resolved by any
resolution procedure PR is
a list of integers <i,j,k,…>
representing indices of
Literal/variable names
indicating priorities of
instantiations of
literals/variables of S used
in PR. If ∏p represents the
canonical, truth table
ordering of variables the
following notation is used:
∏cp.

-(Sequentially ordered SR-
DAG)
- Strongly ordered SR-
DAG (s.o.)
- Loosely ordered SR-DAG
(lo.o.)

3 - Sequentially Ordered SR-
DAG:
∀S, n	∈SR-DAG, S is 2CNFn:
S={Ci,Cj,…CM} for some
i<j<….<M’, M’<=M. M number
of clauses in S, Cx’s are clauses or
derivations of clauses enumerated
from left to right in S
-	Strongly Ordered SR-DAG: ∀S,
0	 ∈SR-DAG, S is 2CNFn: S is
linearly ordered (l.o.)
- Loosely Ordered SR-DAG: ∀S,
0	 ∈SR-DAG, S is 2CNFn: S is
either l.o. or l.o.u.

All
Lemmas

- Strongly ordered Sets are
always linearly ordered,
the inverse is not always
the case, i.e., some l.o.
Sets may have Clause Sets
in their SR-DAGs which
are not l.o.
- If a Set S has a BS which
is l.o. while some other
Clause Sets in its
generated SR-DAG are
l.o.u., then S as well as its
SR-DAG is called loosely
ordered

- Common Node (CN),
- Head-CN (HCN),
- Tail-CN (TCN),

4 -[q]∈SR-DAG is CN if
∃n1,n2	∈SR-DAG such that: [q]
adjacent to both n1 and n2

(Lemma 8)
(Lemma 9)

A CN [q] is supported in a
step l>k if its Clause Set S
gets clauses appended to

Figure 9

Abdelwahab, N.

79

79

- Trivial-CN (tCN),
- (Supported CN)
- Supporting Parent,
-(Direct Parent),
-(Direct Child),
-Double-Sided CN from
the perspective of x
(DSCNx),
-Single-Sided CN from the
perspective of x (SSCNx),
-(Distinguished Literal),
-(Non-Distinguished
Literal),
-CN-Augmenting Literal
(CNAL)

- A CN [q]	∈SR-DAG is HCN if
its Clause Set has a leading/head
clause C∈S, NL q is HL of C

- A CN [q]	∈SR-DAG is TCN if
its Clause Set has a leading/head
clause C’ which is a derivation of
a clause C∈	S, NL q is TL of C
- [q]	∈SR-DAG is tCN if ∃n	∈
	SR-DAG, S is 2CNFn , S is SB,	
Child([q],n)=TRUE

-A CN [q]	∈SR-DAG with
S=2CNF[q], S=Bseq produced in
steps <=k, is said to be supported
in a step l>k if ∃C:Clause, C∈Bx
such that:
S=S ∪ C in step l>k while in steps
<=k: ∃0	 ∈SR-DAG,
Parent(n,[q]), S’ is 2CNFn, S’ is
Bseq and Bx ∉ S’
- CN [q]	∈SR-DAGBS is called
DSCNx if ∃n1,n2:Node∈SR-
DAGBS, x,y:Literal, S1 2CNFn1, S2
2CNFn2 such that: LLRS1=x,
LLRS2=y, x=¬y,
Parent(n1,[q])=TRUE,

Parent(n2,[q])=TRUE.
- CN [q]	∈SR-DAGBS is called
SSCNx if ∃n1,n2:Node∈SR-
DAGBS, x,y:Literal, S1 2CNFn1,
S2 2CNFn2 such that:
LLRS1=LLRS2=x,
Parent(n1,[q])=TRUE,

Parent(n2,[q])=TRUE.
 - CNAL={L:Literal∈C:Clause,
[q] is CN∈SR-DAGBS formed in
steps<=k, L is non-distinguished
for [q] | Size[q] is augmented in
steps>k through invocations:
InstSimpleC ({L=TRUE},C) or
InstSimpleC ({L=FALSE},C)}

its head in step l which
don’t belong to any Block
instantiated in steps <=k
by one or more of its
parents. A parent-set of
such a CN is called
supporting.
If a head-clause of a CN is
also a clause of one of the
Clause Sets of its parents,
then this parent is called
direct parent of the CN.
The CN itself is called
direct child of this parent
A CN [q] formed within a
Block Bx through +ve as
well as -ve edge- or
branch-literals x is
DSCNx. Such a x is called
in this case distinguished
Literal for [q].
A CN [q] formed within a
Block Bx through only +ve
or only -ve edge- or
branch-literals x is SSCNx.
x is called in this case non-
distinguished Literal for
[q].
If for a CN [q] there is no
distinguished Literal x
such that the CN is
DSCNx, then [q] is SSCN.
If a non-distinguished
Literal x for a CN [q]
formed in steps <=k is
used to augment the size
of [q] in step l>k, i.e., x is
instantiated in a clause
added to the clauses of [q]
in l, then x is CNAL for
[q].

- Dependency Graph (DG),
- Leaves of Dependency
Graphs,
- Free Binary Decision
Diagram (FBDD)

5 - DG is a DAG <V,E> where V is
the Set of all NLs, E the Set of
ordered pairs <v1,v2> , v1,v2∈ @

All
Lemmas

- DGs can be deduced
from SR-DAGs in a
canonical way and used as
practical alternatives for
truth tables. They are
equivalent to FBDDs.
- DGs (FBDDs) have the
following properties
a- Each NL can appear
only once in a branch.
b- Branches can have
different Literal/variable
orderings ∏p depending
on the sub-problem p they
belong to c- A leaf of a DG
is a node whose value is
TRUE or FALSE.

Figure 9

Figure 10

Abdelwahab, N.

80

80

- (Splits),
- (N-Splits)
- (CN-Splits)
- (Split Node)
- Big-Splits (BigSps)

6 - Split: A SR-DAG is said to
possess a Split if ∃S’:2CNF
Clause Set such that: For some
n1,n2:Node∈SR-DAGBS, S1 is
2CNFn1, S2 is 2CNFn2, n1≠n2: S’⊆
S1, S’⊆ S2, ∄n:
Child(n,n1)=Child(n,n2)=TRUE
- Splits are called CN-Splits, if, in
addition to the formal condition
above: ∃q:Node, ∃C:Clause: S’ is
2CNF[q] , [q] is CN/MSCN in step
k and C is resolved in steps >k
such that: C1⊆S1, C2⊆S2,
C1,C2∉S’, C1,C2∈Every
Derivation of C, C1≠C2.
- If a Split is not a CN-Split, it is
called a N-Split.
- BigSps: Are Splits of a CN [q]
where rank[q]=rankBN

(Lemma 9) Split: There exists a sub-
Set of clauses common
between two or more
Clause Sets of different
nodes which don’t possess
common sub-trees.
Splits are formed when
either node n containing
Clause Set S constructed
in step k is duplicated one
or more times in steps >k
together with all or parts
of its nodes or sub-trees,
the cause of this
duplication being that S is
resolved with a clause
whose least-Literal was
new in that step and had an
index < all or any indices
of head-literals in S (N-
Split) or a CN [q]
constructed in step k
and/or any of its nodes or
sub-trees are duplicated
with variations one or
more times in steps >k
(CN-Split).
If [q] is a CN of a SR-
DAG which is split in step
k, then the new node
[q]'=[q]+C' formed in k,
because C∈BS is resolved
(C' is a Derivation of C) is
called: Split-Node.
BigSps occur when a CN
is split which has the same
rank as the rank of the
base node. They are
causes of exponential
behavior of 2SAT-
GSPRA.

- Clauses Renaming
Algorithm (CRA),
-(Connection Matrix),
- Renaming Precedence
Condition (RPC)

7 - CRA c.f. Definition 7

(Lemma 1)
(Lemma 3)
(Lemma 6)
(Lemma 8)

Connection Matrix: Rows
are Literal Names/Indices,
Columns are clauses,
Entries are TRUE/FALSE
according to whether the
Literal occurs in the given
clause or not
RPC: Arrange literals in
ascending order within
any Ci ∈ C such that
literals which were not
renamed before and
appear more often in other
clauses become HLs
before those which appear

Abdelwahab, N.

81

81

less often or which only
appear in Ci.

- (Mapping),
- (Image),
- Variable Space/Space
(VS),
- 2CNF Clause Set in
space-i (Sspace-i),
- Node in space-i
(Nodespace-i)

8.1 - Mapping: (N) => N
- VS=Mapping*(N)

(Lemma 1)
(Lemma 9)

- Mapping is a bijective
function giving a Literal
Name/Index in a 2CNF
Clause Set S its new
Name/Index after a
renaming operation using
CRA.
- The new Name/Index is
also called: Image of the
Literal. New names of
literals forming single
clauses or Clause Sets are
called Images of clauses
or Clause Sets.
– A VS is a subsequent
application of mappings
starting from the Base
Clause Set of a 2CNF
formula.
- To express that a Clause
Set is formed in a certain
space-i the notation:
S={{..}…{..}}space-i or just
Sspace-i is used.
- To express that a node is
formed in a certain space-
i the notation: Node space-i
is used.

- (Apply)
- (InvApply)

8.2 - Apply: (M:Mapping, S:2CNF
Clause Set) => 2CNF Clause Set

All
Lemmas

- Apply is a function
which replaces
occurrences of literals in a
2CNF Clause Set S with
their Names/Indices given
by the mapping M.
- InvApply is similarly
defined, but applies to S:
M-1 instead of M.

- Equivalence via Mapping
(S1 ⇔M S2),
- (Syntactic Image)

8.3 - S1 ⇔M S2: if ∃M1, M2:Mapping
such that:
Apply(M1,S1)=Apply(M2,S2)=S’.
S’ is called syntactic image of
both S1, S2.

(Lemma 2) - Equivalent via Mapping:
Are 2CNF Clause Sets
which reside in MSCNs,
i.e., CNs which are
formed between different
Variable Spaces

- trivial Mapping
(tMapping),
- (Stable Set of literals),
 - (Stable Clause)
- Stable Clause Set

8.4 - tMapping: ∃M:Mapping, S a
2CNF Clause Set, ∀xÎLIT(S):
M(x)=x
- Sub is a Stable Set of literals: If
∃M:Mapping produced in step k
such that: ∀xÎSub, Sub⊆Lit(S):
M(x)=x in any step >k
- Stable Clause: ∀x:LiteralÎCi,
xÎSub⊆Lit(S), Sub is a Stable Set
of literals

(Lemma 2)
(Lemma 3)

- tMapping: Each Literal
index is given itself after a
renaming operation using
CRA.
-Stable Set of literals: a
subset of Literal indices is
mapped to itself via CRA
in step k and remains
always mapped to itself
for any step>k,

Abdelwahab, N.

82

82

- Stable Clause Set:
∀CiÎS:Clause Set, Ci is stable,
then: S is a Stable Clause Set.

- Mixed-Space Node
(MSN),
- Single-Space Nodes
(SSN)

8.5 - MSN: S1, S2 are 2CNF Clause
Sets of nodes n1,n2ÎSR-DAG,
respectively, and S1≠S2, but
n1=n2=n.

(Lemma 9) - MSNs possess two
syntactically non-
equivalent Clause Sets,
because of the application
of CRA+
- SSNs are nodes in which
CRA+ was not applied

- Mixed-Space Tree
(MST),
- Single-Space Tree (SST)
- Literal in space-i
(Lspace-i)
- Literal x proceeds Literal
y in a Clause Set S of space-
i
((x | y)space-i)
- Mapping in space-i
(Mspace-i)

8.6 - (x | y)space-i: If ∃space-i:VS such
that:
Sspace-i is a 2CNF Clause Set
where:
FIRST(x,Sspace-i)<FIRST(y,Sspace-i)

(Lemma 1)
(Lemma 9)

- MST: SR-DAG with
MSN nodes
- SST: SR-DAG with only
SSNs.
– Lspace-i refers to the name
of Literal L given by a
mapping M in space-i.
- x proceeds y in space-i:
Within space-i the first
occurrence of Literal x in a
Clause Set S comes before
the first occurrence of
Literal y. When space-i is
known, its subscript is
omitted. Since S is always
apparent from the context
a reference to it is omitted
as well.
- Mspace-i: Refers to the
mapping created by a
CRA operation within
space-i.

- Monotone Mapping in
space-i (mMspace-i)

8.7 - A mapping is monotone when
∀x,y∈LIT(Sspace-i): if (x | y) space-i
then also Mspace-i (x)<Mspace-i (y)

(Lemma 1)
(Lemma 9)

-This property is intrinsic
in all GSPRA Algorithms

- Clauses Renaming and
Ordering Algorithm
(CRA+),
- (CRA-Form)
- Sequentially-Ordered,
Multi-Space Resolution
Tree/SR-DAG (MSRTs.o.),
- Multiple Space Block
(MSB)

9, 10 - CRA+: Pseudo-Code Definition
9, CRA+(S) is called the CRA-
Form of S.
- MSRTs.o.: Is a SR-DAG such
that:
∀nspace-i:NodeÎSR-DAG:
(2CNFn)space-i is l.o.
- MSB = {(Bx1)space-i:2CNF Clause
Set |
∃space-j, (Bx2)space-j:2CNF Clause
Set,
M: Mapping, where:
((Bx1)space-i ⇔M (Bx2)space-j) Or
((B’x1)space-i ⇔M (B’x2)space-j)), B’x1,
B’x2 are Derivations of Bx1, Bx2, in
respective Spaces }

(Lemma 2)
(Lemma 3)
(Lemma 8)
(Lemma 9)
(Lemma 10)

 -MSRTs.o is a MST whose
Clause Sets are all l.o.
- MSB: A block Bx whose
Clause Set or derivations
thereof (all or part of
them) belong to more than
one VS (Notation also:
BxS1,S2,..,S1,S2,.. Variable
Spaces).
- Similar to Single Space
Blocks: An MSB may be
symmetric or
dissymmetric.

-Multi-spaced Symmetric
Block (MSSB)

10.1 - MSSB = {
(Bx1)space-i:2CNF Clause Set |
∃space-j, (Bx2)space-j:2CNF Clause
Set,
M: Mapping, where

(Lemma 8)
(Lemma 9)

- MSSB is the structure in
which a tMSCN can occur

Abdelwahab, N.

83

83

((Bx1)space-i ⇔M (Bx2)space-j

Or
(B’x1)space-i ⇔M (B’x2)space-j)
B’x1, B’x2 are Derivations of Bx1,
Bx2, in respective Spaces	 and
∃Aspace-i, Aspace-j: Assignment such
that: 	
instSimple(Aspace-i:{X1=TRUE},
(Bx1)space-i) ⇔M
instSimple(Aspace-j:{X2=FALSE},
(Bx2)space-j)
}	

	

- Multiple Space Common
Node (MSCN)
- Target Space (TS)

10.2 - MSCN:- if ∃n1,n2	∈ MSRTs.o not
necessarily of the same space: [q]
adjacent to both n1 and n2

(Lemma 8)
(Lemma 9)
(Lemma 10)

- Target Space: The VS of
a node which is target of
two or more MSNs in a
MSRTs.o.

- Double-Sided MSCN

with respect to Literal z
(DS-MSCNz),
- Single-Sided MSCN with
respect to Literal z (SS-
MSCNz),
- trivial MSCN (tMSCN)

11 - [q]space-i is DS-MSCNz, if
∃n1,n2	∈ MSRTs.o of 2CNF Clause
Set S, ∃xspace-j	, yspace-k:Literal,
∃M1,M2: Mapping, such that:
[q]space-i is adjacent to both n1 and
n2 and
zspace-i =M1(xspace-j), zspace-i
=M2(yspace-k), where yspace-k has the
opposite sign of xspace-j

- [q]space-i is SS-MSCNz, if
∃n1,n2	∈ MSRTs.o of 2CNF Clause
Set S, ∃xspace-j	, yspace-k,
∃M1,M2:Mapping, such that:
[q]space-i is adjacent to both n1 and
n2 and
zspace-i =M1(xspace-j), zspace-i
=M2(yspace-k), where yspace-k has the
same sign as xspace-j,
- [q] is tMSCN, if ∃n	∈	MSRTs.o
whose Clause Set is a MSSB,
Child[q],n)=TRUE

(Lemma 8)
(Lemma 9)

- DS-MSCNz: There exist
at least two edge- or
branch-literals x, y from
Spaces space-j, space-k
respectively and a Literal z
from the target space-i
such that both literals are
translated to z within their
respective spaces and
have opposite signs.
Literals x and y are also
called distinguished (c.f.
Definition 4,
(Distinguished Literal)).
- SS-MSCNz: Similar
definition, but x, y have
same signs
- tMSCN: [q] is formed in
step k and belongs to a
MSSB to which one or
more of its parents
belonged in steps <k
- DS-MSCNz as well as
SS-MSCNz are used to
show that a MSCN cannot
be first augmented to sizes
>1 and then split except in
the trivial case of a
tMSCN (Lemma 9-c)
- tMSCNs are called
trivial, because they can
result in Splits which
happen only inside
symmetric Blocks and
thus can be avoided
altogether when an
appropriate sorting
condition within CRA+ is

Abdelwahab, N.

84

84

chosen (called: DB-
Sorting, (Lemma 8)

(Aligned MSRTs.o,),
(Alignment Clause ,
(Aligned Node)
(Alignment MSRTs.o)

12,13 -Aligned MSRTs.o:- ∃C S, C’
derivation of C such that:∀n
MSRTs.o., S’ is 2CNFn,
∀Cx S’ the following is true:
a-
SortOrder(C’,S’)>SortOrder(Cx,
S’)
b- S’ is l.o.
- A node n of size M is said to be
aligned if:

- For M<=2: n possesses
a Clause Set with an
aligned MSRTs.o
- For M>2:
(iii) All nodes of

sub-trees of size M
are l.o.

(iv) All nodes of
sub-trees of size <M
are aligned

- An MSRTs.o whose nodes are all
aligned is called Alignment
MSRTs.o

(Lemma 6)
(Lemma 7)
(Lemma 10)

- C is called Alignment
Clause
- The fact that a MSRTs.o

produced by 2SAT-
GSPRA+ is always an
Alignment MSRTs.o is
used to show that the
number of new nodes on
size-level 1 in any
inductive step cannot
become more than the
number of elements in
ACS which are linearly
many (Lemma 7)

Resolution procedures:
(2SAT-GSPRA+), (Align)
(LCS)

14 c.f. Section III.1 (Lemma 6)
(Lemma 7)
(Lemma 8)
(Lemma 9)
(Lemma 10)

-Used to study the effect
of resolving one single
clause at a time and count
the number of unique
nodes produced in the
final MSRTs.o

- LCS: List of Tuples:
<Clause Set, Node index>
initially empty used to
store already resolved
Clause Sets and their
generated sub-trees

2SAT Fast Generic Pattern
Resolution Algorithm
(2SAT-FGPRA)

15 c.f. Section III.1 (Lemma 11) -This is the central,
practical Algorithm
proposed in this work (and
a similar one is proposed
in [Abdelwahab 2016-2]
as well). It overcomes the
main drawback of 2SAT-
GSPRA+ of having to re-
construct sub-trees again
and again in case their
respective Clause Sets are
not l.o. Instantiation is
performed always in any
node on the whole
2CNFnode rather than step
wise one clause at a time.

Abdelwahab, N.

85

85

- 2SAT-FGPRA is shown
to correctly simulate
2SAT-GSPRA+ (Lemma
11-a)

Abdelwahab, N.

86

86

VI-B Selected Lemmas and their Dependencies on Formalized Concepts

Lemma 2: For a 2CNF Clause Set S it is true
that:

- S is l.o. iff CRA+(S) reaches a
stable Set equivalent to LIT(S)

- S is satisfiable iff CRA+(S) is
satisfiable

- S is logically equivalent to
CRA+(S)

l.o. Condition

Stable Set

CRA+

Satisfiable

Assignment

LIT

Lemma 3: The complexity of CRA+ is in
O(M2(Log M+N)

l.o. Condition

l.o.u. Condition

CRA+

CRA

RPC

Lemma 4: CRA+ terminates always
converting an arbitrary 2CNF Clause Set to a
stable one

l.o. Condition

l.o.u. Condition

CRA+

CRA

Stable Set

Lemma 1:
- CRA produces monotone

Mappings
- (x | y) iff (x<y)
- (xspace-i | yspace-i) iff (x | y) when

involved Clause Sets are l.o. and
order of clauses and images of
clauses in respective spaces is
preserved

l.o. Condition

monotone Mapping

CRA

VSpace

LIT

(x | y)

FIRSTC

SortOrder

Abdelwahab, N.

87

87

Lemma 5:

a- For all n1,n2 nodes ∈ MSRTs.o: if n1,n2 are not directly connected in
steps <=k then they cannot be directly connected in steps >k, if the sort
order of their Clause Sets is not altered, except in the trivial case when
the new Clause belongs to a block, parents of n1,n2 were instantiating in
steps <=k and n1, n2 become equivalent (tCN, tMSCN).
b- For all M>1: A node [q] of size M is CN/MSCN iff there exist
CN/MSCN [q’] of size M-1 augmented in size by a clause C such that:
[q]=[q’]
c-Let up1,upj be upper bounds of nodes generated during the whole
process of resolution in size-levels 1 and j, respectively, where 1<j<=M.
If Splits are not accounted for in any size-level j, then: upj<=up1

2SAT-GSPRA

LLRBS

CNs/MSCNs

Lemma 9-a: CNs and MSCNs containing clauses belonging to the BS
or their images cannot split.
Proof sketch: in step k: there exists a Clause C1={a, b}∈BS and a
mapping M such that: a’=MST(a), b’=MST(b). In this step also: All
literals of C1 and all their images were new in all branches and spaces
leading to the MSCN [q], i.e., for all i,lspace-i,S: where lspace-i is a branch-
or edge-literal of [q]STsp1,sp2,sp3,., S Clause Set of any parent node in space-
i.: (lspace-i | aspace-i) and per Lemma 1-a also: M(lspace-i)<M(aspace-i).
To split [q], in steps>k:: there must exist a Clause C2={x, y}∈BS and a
parent node p of [q] such that: xspace-i = lspace-i for some literal lspace-i in p,
i.e., M(xspace-i)<M(aspace-i). Then: Per l.o. of BS: Either x=a which
means [q] is only augmented in size not split or a<x and thus (a | x) per
Lemma 1-b. BS is then in one of the forms:
1-{..{..,a}..{r, x}..{s,	¬x}…{a, b}…{x,y}…} or
2-{..{a,b}..{x,y},..}. Form 2 leads to (aspace-i | xspace-i), hence: M(aspace-i)
<M(xspace-i). Contradiction. Form 1 causes the MSCN to be augmented
by {x,y}, not split.
(A shorter version of this anchor proof of this work, using the ‘>’
relation, can be found in Footnote 43)

BS, rank, size

CN, MSCN

Mapping , monotone Mapping

Lemma 8: ∀SB, DB, tCN such that SB⊆DB and tCN formed in SB:tCN
can be avoided by appropriately choosing the DB Sorting Condition.
Similarly: tMSCNs can be avoided as well.

Lemma 7: (Alignment MSRTs.o)

2SAT-GSPRA+ produces aligned MSRTs.os and if Splits are not
counted, then during the whole process of resolution:

-The number of newly added size-1-level nodes cannot exceed
RCC2-SAT*M2

- The number of newly added size-j-level nodes, j>1, cannot
exceed RCC2-SAT*M2 as well, for any level j

2SAT-GSPRA+

Lemma 6: (Aligned Base Cases) All size 1,2 nodes of any MSRTs.o of a
2CNF Clause Set S produced by 2SAT-GSPRA+ are aligned.

2SAT-GSPRA+

SB, DB, tMSCN

RPC, Aligned MSRTs.o

ACS

Aligned MSRTs.o

2SAT-GSPRA+

Distinguished-,
non-Distinguished Literal

Lemma 1

Abdelwahab, N.

88

88

CRA-Form

Lemma 10: The total number of unique-nodes produced by 2SAT-
GSPRA+ in the final MSRTs.o, including those generated by Splits, is
bounded above by:

2+ c*RCC2-SAT2 *M4 + RCC2-SAT *M3, c<=2, i.e., O(M4)

Moreover: This bound remains polynomial, i.e., O(M6), if Splits are
admitted which are not BigSps (i.e., Lemma 9-c relaxed).

Alignment Clause

CN, MSCN

ACS

Lemma 5

Lemma 6

Lemma 9

Lemma 11: The following is true:
a- For any arbitrary 2CNF Clause Set S: ∃MSRTs.o such that:

2SAT-FGPRA(S)=2SAT-GSPRA+(S).
b- For 2SAT-FGPRA to produce the MSRTs.o shown to exist

in point a-: For the main Assistance Operations used by 2SAT-FGPRA
on 2CNF Clause Sets S of size M: The total, worst case number of
Primitive Operations performed by any single one of them during a
run of 2SAT-FGPRA is: O(M9). If Splits are admitted which are not
BigSps, i.e., Lemma 9-c is relaxed, then this bound is O(M13).

Top-parts

l.o. Condition

Lemma 10

2SAT-FGPRA

Lemma 12: 2SAT-GSPRA+ and 2SAT-FGPRA are complete, truth
table equivalent Algorithms, i.e.: Let S be a 2CNF Clause Set, A any
Assignment of truth values of literals in S, then: Applying A on the
MSRTs.o produced by any of the two Algorithms leads to a TRUE leaf
iff A satisfies S.

Assignment

Assignment Satisfies S

Copyright © 2018 JOURNAL ACADEMICA FOUNDATION • All rights reserved
ISSN 2161-3338 • www.journalacademica.org

